JETP Letters

, Volume 107, Issue 2, pp 119–125 | Cite as

Systematic Study of Vortex Pinning and a Liquid–Glass Phase Transition in BaFe2–xNi x As2 Single Crystals

  • V. A. Vlasenko
  • O. A. Sobolevskiy
  • A. V. Sadakov
  • K. S. Pervakov
  • S. Yu. Gavrilkin
  • A. V. Dik
  • Yu. F. Eltsev
Condensed Matter
  • 10 Downloads

Abstract

The vortex pinning and liquid-glass transition have been studied in BaFe2–xNi x As2 single crystals with different doping levels (x = 0.065, 0.093, 0.1, 0.14, 0.18). We found that Ni-doped Ba-122 has rather narrow vortex-liquid state region. Our results show that the temperature dependence of the resistivity as well as I−V characteristics of Ni-doped Ba-122 is consistent with 3D vortex-glass model. It was found that -pinning gives the main contribution to overall pinning in 122 Ni-doped system. The vortex phase diagrams for different doping levels were built based on the obtained data of temperature of the vortex-glass transition Tg and the upper critical magnetic field Hc2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. K. Mak, P. Burger, L. Cevey, T. Wolf, C. Meingast, and R. Lortz, Phys. Rev. B 87, 214523 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    B. Lundqvist, A. Rydh, Yu. Eltsev, Ö. Rapp, and M. Andersson, Phys. Rev. B 57, R14064 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    L. Li, J. G. Checkelsky, S. Komiya, Y. Ando, and N. P. Ong, Nat. Phys. 3, 311 (2007).CrossRefGoogle Scholar
  4. 4.
    Zh. Wang, T. Xie, E. Kampert, T. Förster, X. Lu, R. Zhang, D. Gong, Sh. Li, T. Herrmannsdörfer, J. Wosnitza, and H. Luo, Phys. Rev. B 92, 174509 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    M. Abdel-Hafiez, P. J. Pereira, S. A. Kuzmichev, T. E. Kuzmicheva, V. M. Pudalov, L. Harnagea, A. A. Kordyuk, A. V. Silhanek, V. V. Moshchalkov, B. Shen, H.-H. Wen, A. N. Vasiliev, and X.-J. Chen, Phys. Rev. B 90, 054524 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    X. P. Zhang, H. Oguro, C. Yao, C. H. Dong, Z. T. Xu, D. L. Wang, S. Awaji, K. Watanabe, and Y. W. Ma, IEEE Trans. Appl. Supercond. 27, 7300705 (2017).Google Scholar
  7. 7.
    S. Yoon, Y.-S. Seo, S. Lee, J. D. Weiss, J. Jiang, M. Oh, J. Lee, S. Seo, Y. J. Jo, E. E. Hellstrom, Ju. Hwang, and S. Lee, Supercond. Sci. Technol. 30, 035001 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    S. Richter, F. Kurth, K. Iida, K. Pervakov, A. Pukenas, C. Tarantini, J. Jaroszynski, J. Hänisch, V. Grinenko, W. Skrotzki, K. Nielsch, and R. Hühne, Appl. Phys. Lett. 110, 022601 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    S. Schmidt, S. Döring, N. Hasan, F. Schmidl, V. Tympel, F. Kurth, K. Iida, H. Ikuta, T. Wolf, and P. Seidel, Phys. Status Solidi B 254, 1600165 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    T. Katase, H. Hiramatsu, T. Kamiya, and H. Hosono, Supercond. Sci. Technol. 23, 082001 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    Sh. Ishida, D. S. H. Ogino, A. Iyo, H. Eisaki, M. Nakajima, J.-I. Shimoyama, and M. Eisterer, Phys. Rev. B 95, 014517 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    M. P. A. Fisher, Phys. Rev. Lett. 62, 1415 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    H.-J. Kim, Y. Liu, Y. S. Oh, S. Khim, I. Kim, G. R. Stewart, and K. H. Kim, Phys. Rev. B 79, 014514 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    S. R. Ghorbani, X. L. Wang, M. Shabazi, S. X. Dou, K. Y. Choi, and C. T. Lin, Appl. Phys. Lett. 100, 072603 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    Yu. F. Eltsev, K. S. Pervakov, V. A. Vlasenko, S. Yu. Gavrilkin, E. P. Khlybov, and V. M. Pudalov, Phys. Usp. 57, 827 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    D. S. YInosov, T. Shapoval, V. Neu, U. Wolff, J. S. White, S. Haindl, J. T. Park, D. L. Sun, C. T. Lin, E. M. Forgan, M. S. Viazovska, J. H. Kim, M. Laver, K. Nenkov, O. Khvostikova, S. Kühnemann, and V. Hinkov, Phys. Rev. B 81, 014513 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    H.-S. Lee, M. Bartkowiak, J. S. Kim, and H.-J. Lee, Phys. Rev. B 82, 104523 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Sun, S. Pyon, T. Tamegai, R. Kobayashi, T. Watashige, Sh. Kasahara, Y. Matsuda, and T. Shibauchi, Phys. Rev. B 92, 144509 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Yu, Ch. Wang, Q. Li, H. Wang, and Ch. Zhang, J. Phys. Soc. Jpn. 83, 114701 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    K. S. Pervakov, V. A. Vlasenko, E. P. Khlybov, A. Zaleski, V. M. Pudalov, and Yu. F. Eltsev, Supercond. Sci. Technol. 26, 015008 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    M. Abdel-Hafiez, Y.-Y. Zhang, Z.-Y. Cao, Ch.-G. Duan, G. Karapetrov, V. M. Pudalov, V. A. Vlasenko, A.V.Sadakov, D. A. Knyazev, T. A. Romanova, D. A. Chareev, O. S. Volkova, A. N. Vasiliev, and X.-J. Chen, Phys. Rev. B 91, 165109 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    J. K. Edward, J. Appl. Phys. 44, 1360 (1973).CrossRefGoogle Scholar
  23. 23.
    D. Dew-Hughes, Philos. Mag. 30, 293 (1974).ADSCrossRefGoogle Scholar
  24. 24.
    M. R. Koblischka and M. Muralidhar, Int. J. Mod. Phys. B 30, 1630017 (2016).ADSCrossRefGoogle Scholar
  25. 25.
    Ch. P. Bean, Rev. Mod. Phys. 36, 31 (1964).ADSCrossRefGoogle Scholar
  26. 26.
    T. E. Kuzmicheva, V. A. Vlasenko, S. Yu. Gavrilkin, S. A. Kuzmichev, K. S. Pervakov, I. V. Roshchina, and V. M. Pudalov, J. Supercond. Novel Magn. 29, 3059 (2016).CrossRefGoogle Scholar
  27. 27.
    T. E. Kuzmicheva, V. M. Pudalov, S. A. Kuzmichev, A.V. Sadakov, Yu. A. Aleshenko, V. A. Vlasenko, V. P. Martovitsky, K. S. Pervakov, and Yu. F. Eltsev, Phys. Usp. 60, 3059 (2016).Google Scholar
  28. 28.
    A. Yamamoto, J. Jaroszynski, C. Tarantini, L. Balicas, J. Jiang, A. Gurevich, D. C. Larbalestier, R. Jin, A. S. Sefat, M. A. McGuire, B. C. Sales, D. K. Christen, and D. Mandrus, Appl. Phys. Lett. 94, 062511 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    B. Shen, P. Cheng, Zh. Wang, L. Fang, C. Ren, L. Shan, and H.-H. Wen, Phys. Rev. B 81, 014503 (2010).ADSCrossRefGoogle Scholar
  30. 30.
    M. Shahbazi, X. L. Wang, K. Y. Choi, and S. X. Dou, Appl. Phys. Lett. 103, 032605 (2013).ADSCrossRefGoogle Scholar
  31. 31.
    S. Demirdis, Y. Fasano, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, M. Konczykowski, H. Pastoriza, and C. J. van der Beek, Phys. Rev. B 87, 094506 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    C. J. van der Beek, M. Konczykowski, S. Kasahara, T. Terashima, R. Okazaki, T. Shibauchi, and Y. Matsuda, Phys. Rev. Lett. 105, 267002 (2010).ADSCrossRefGoogle Scholar
  33. 33.
    C. J. van der Beek, G. Rizza, M. Konczykowski, P. Fertey, I. Monnet, T. Klein, R. Okazaki, M. Ishikado, H. Kito, A. Iyo, H. Eisaki, S. Shamoto, M. E. Tillman, S. L. Bud’ko, P. C. Canfield, T. Shibauchi, and Y. Matsuda, Phys. Rev. B 81, 174517 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).ADSCrossRefGoogle Scholar
  35. 35.
    A. K. Pramanik, S. Aswartham, A. U. B. Wolter, S. Wurmehl, V. Kataev, and B. Büchner, J. Phys.: Condens. Matter 25, 495701 (2013).Google Scholar
  36. 36.
    D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. 43, 130 (1991).ADSCrossRefGoogle Scholar
  37. 37.
    M. Shahbazi, X. L. Wang, S. R. Ghorbani, M. Ionescu, O. V. Shcherbakova, F. S. Wells, A. V. Pan, S. X. Dou, and K. Y. Choi, Supercond. Sci. Technol. 26, 095014 (2013).ADSCrossRefGoogle Scholar
  38. 38.
    L. Jun-Chao, Y. Yi, P. Li, and Zh. Yu-Heng, Chin. Phys. B 23, 127402 (2014).ADSCrossRefGoogle Scholar
  39. 39.
    R. H. Koch, V. Foglietti, W. J. Gallagher, G. Koren, A. Gupta, and M. P. A. Fisher, Phys. Rev. Lett. 63, 1511 (1989).ADSCrossRefGoogle Scholar
  40. 40.
    F. X. Hao, M. J. Zhang, M. L. Teng, Y. W. Yin, W. H. Jiao, G. H. Cao, and X. G. Li, J. Appl. Phys. 117, 173901 (2015).ADSCrossRefGoogle Scholar
  41. 41.
    S. Salem-Sugui, Jr., L. Ghivelder, A. D. Alvarenga, L. F. Cohen, H. Luo, and X. Lu, Supercond. Sci. Technol. 26, 025006 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. A. Vlasenko
    • 1
    • 2
  • O. A. Sobolevskiy
    • 1
    • 2
  • A. V. Sadakov
    • 1
  • K. S. Pervakov
    • 1
  • S. Yu. Gavrilkin
    • 1
  • A. V. Dik
    • 1
  • Yu. F. Eltsev
    • 1
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow regionRussia

Personalised recommendations