Skip to main content
Log in

Microstructural properties and evolution of nanoclusters in liquid Si during a rapid cooling process

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The formation of amorphous structures in Si during the rapid quenching process was studied based on molecular dynamics simulation by using the Stillinger–Weber potential. The evolution characteristics of nanoclusters during the solidification were analyzed by several structural analysis methods. The amorphous Si has been formed with many tetrahedral clusters and few nanoclusters. During the solidification, tetrahedral polyhedrons affect the local structures by their different positions and connection modes. The main kinds of polyhedrons randomly linked with one another to form an amorphous network structures in the system. The structural evolution of crystal nanocluster demonstrates that the nanocluster has difficulty to growth because of the high cooling rate of 1012 K/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. J. Treacy and K. B. Borisenko, Science 335, 950 (2012).

    Article  ADS  Google Scholar 

  2. P. L. Tereshchuk, Z. M. Khakimov, F. T. Umarova, and M. T. Swihart, Phys. Rev. B 76, 125418 (2007).

    Article  ADS  Google Scholar 

  3. Z. Liu, J. Wen, T. Zhou, Ch. Xue, Yu. Zuo, Ch. Li, B. Cheng, and Q. Wang, Thin Solid Films 597, 39 (2015).

    Article  ADS  Google Scholar 

  4. K. O. Hara, C. T. Trinh, Y. Kurokawa, K. Arimoto, J. Yamanaka, K. Nakagawa, and N. Usami, Thin Solid Films 636, 546 (2017).

    Article  ADS  Google Scholar 

  5. H. Sun, H.-Ch. Wu, Sh.-Ch. Chen, C.-W. Ma, and L. X. Wang, Nanoscale Res. Lett. 12, 224 (2017).

    Article  ADS  Google Scholar 

  6. X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, Nano Lett. 12, 2187 (2012).

    Article  ADS  Google Scholar 

  7. F. Wooten, K. Winer, and D. Weaire, Phys. Rev. Lett. 54, 1392 (1985).

    Article  ADS  Google Scholar 

  8. I. Štich, R. Car, and M. Parrinello, Phys. Rev. B 44, 11092 (1991).

    Article  ADS  Google Scholar 

  9. R. Biswas, B. C. Pan, and Y. Y. Ye, Phys. Rev. Lett. 88, 205502 (2002).

    Article  ADS  Google Scholar 

  10. M. M. J. Treacy and K. B. Borisenko, Science 335, 950 (2012).

    Article  ADS  Google Scholar 

  11. A. Pedersen, L. Pizzagalli, and H. Jónsson, New J. Phys. 19, 063018 (2017).

    Article  ADS  Google Scholar 

  12. M. J. Cliffe, A. P. Bartók, R. N. Kerber, C. P. Grey, G. Csányi, and A. L. Goodwin, Phys. Rev. B 95, 224108 (2017).

    Article  ADS  Google Scholar 

  13. F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).

    Article  ADS  Google Scholar 

  14. J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).

    Article  ADS  Google Scholar 

  15. J. Tersoff, Phys. Rev. B 38, 9902 (1988).

    Article  ADS  Google Scholar 

  16. R. Biswas and D. R. Hamann, Phys. Rev. B 36, 6434 (1987).

    Article  ADS  Google Scholar 

  17. B. P. Feuston, R. K. Kalia, and P. Vashishta, Phys. Rev. B 35, 6222 (1987).

    Article  ADS  Google Scholar 

  18. M. Ishimaru, K. Yoshida, and T. Motooka, Phys. Rev. B 53, 7176 (1996).

    Article  ADS  Google Scholar 

  19. J. Bernal, Nature 183 (17), 141 (1959).

    Article  ADS  Google Scholar 

  20. J. D. Honeycutt and H. C. Anderson, J. Phys. Chem. 91, 4950 (1987).

    Article  Google Scholar 

  21. R. S. Liu, K. J. Dong, and Z. A. Tian, J. Phys.: Condens. Matter 19, 196103 (2007).

    ADS  Google Scholar 

  22. R. S. Liu, K. J. Dong, and J. Y. Li, J. Non-Cryst. Solids 351, 612 (2005).

    Article  ADS  Google Scholar 

  23. J. L. Finney, Proc. R. Soc. London, Ser. A 319, 479 (1970).

    Article  ADS  Google Scholar 

  24. H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, and E. Ma, Nature (London) 439, 419 (2006).

    Article  ADS  Google Scholar 

  25. G. R. Chen, C. Song, J. Xu, D. Q. Wang, L. Xu, and Z. Y. Ma, Acta Phys. Sin. 59, 5681 (2010).

    Google Scholar 

  26. S. Munetoh, P. X. Yan, T. Ogata, T. Motooka, and R. Teranishi, Trans. Iron Steel Inst. Jpn. 50, 1925 (2010).

    Article  Google Scholar 

  27. S. Maruyama and K. Teshima, Jpn. Soc. Mech. Eng. 2002, 31 (2002).

    Google Scholar 

  28. I. H. Lee and K. J. Chang, Phys. Rev. B 50, 18083 (1994).

    Article  ADS  Google Scholar 

  29. D. A. Drabold, P. A. Fedders, O. F. Sankey, and J. D. Dow, Phys. Rev. B 42, 5135 (1990).

    Article  ADS  Google Scholar 

  30. A. E. Galashev, V. A. Polukhin, I. A. Izmodenov, and O. R. Rakhmanova, Glass Phys. Chem. 33, 86 (2007).

    Article  Google Scholar 

  31. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gao.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, T., Hu, X., Li, Y. et al. Microstructural properties and evolution of nanoclusters in liquid Si during a rapid cooling process. Jetp Lett. 106, 667–671 (2017). https://doi.org/10.1134/S0021364017220015

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017220015

Navigation