Skip to main content
Log in

Success of spiral wave unpinning from heterogeneity in a cardiac tissue depends on its boundary conditions

  • Biophysics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The mechanism of the low voltage defibrillation is based on the drift of the spiral wave induced by a high frequency wave train. In the process, it is first necessary to unpin the wave from the stabilizing obstacle. We study the conditions of unpinning of a rotating wave anchored to the defect by posing the main accent on the boundary conditions of it. The computer simulations performed using the Korhonen model showed that the fluxes through the border of the defect in the cardiac tissue can significantly modify the excitation pattern, and the working frequency gap for the unpinning of reentry waves could be substantially reduced, making overdrive pacing procedure less effective or practically inapplicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Mehra, J. Electrocardiol. 40, S118 (2007).

    Article  Google Scholar 

  2. S. Kadota, M. Kay, N. Magome, and K. Agladze, JETP Lett. 94, 824 (2011).

    Article  ADS  Google Scholar 

  3. M. J. Osborn, Cardiology: Fundamentals and Practice (Mosby Elsevier Health Science, Philadelphia, PA, 1987).

    Google Scholar 

  4. F. H. Fenton, S. Luther, E. M. Cherry, N. F. Otani, V. Krinsky, A. Pumir, E. Bodenschatz, and R. F. Gilmour, Circulation 120, 467 (2009).

    Article  Google Scholar 

  5. T. K. Shajahan, S. Berg, S. Luther, V. Krinski, and P. Bittihn, New J. Phys. 18, 043012 (2016).

    Article  ADS  Google Scholar 

  6. S. Luther, F. H. Fenton, B. G. Kornreich, A. Squires, P. Bittihn, D. Hornung, M. Zabel, J. Flanders, A. Gladuli, L. Campoy, E. M. Cherry, G. Luther, G. Hasenfuss, V. I. Krinsky, A. Pumir, R. F. Gilmour, Jr., and E. Bodenschatz, Nature 475, 235 (2011).

    Article  ADS  Google Scholar 

  7. G. Gottwald, A. Pumir, and V. Krinsky, Chaos 11, 487 (2001).

    Article  ADS  Google Scholar 

  8. C. M. Ripplinger, V. I. Krinsky, V. P. Nikolski, and I. R. Efimov, Am. J. Physiol. 294, H503 (2006).

    Google Scholar 

  9. E. Boccia, S. Luther, and U. Parlitz, Phil. Trans. A 375, 2096 (2017).

    Article  Google Scholar 

  10. R. H. Clayton, O. Bernus, E. M. Cherry, H. Dierckx, F. H. Fenton, L. Mirabella, A. V. Panfilov, F. B. Sachse, G. Seemann, and H. Zhang, Prog. Biophys. Mol. Biol. 104, 22 (2011).

    Article  Google Scholar 

  11. H. Arevalo, G. Plank, P. Helm, H. Halperin, and N. Trayanova, PloS One 8, e68872 (2013).

    Article  ADS  Google Scholar 

  12. P. Kohl, P. Camelliti, F. L. Burton, and G. L. Smith, J. Electrocardiol. 38, 45 (2005).

    Article  Google Scholar 

  13. T. A. Quinn, P. Camelliti, E. A. Rog-Zielinska, U. Siedlecka, T. Poggioli, E. T. O’Toole, T. Knöpfel, and P. Kohl, Proc. Natl. Acad. Sci. 113, 14852 (2016).

    Article  Google Scholar 

  14. T. Korhonen, S. L. Hänninen, and P. Tavi, Biophys. J. 96, 1189 (2009).

    Article  ADS  Google Scholar 

  15. L. Hou, M. Deo, P. Furspan, S. V. Pandit, S. Mironov, D. S. Auerbach, Q. Gong, Z. Zhou, O. Berenfeld, and J. Jalife, Circulat. Res. 107, 1503 (2010).

    Article  Google Scholar 

  16. R. Majumder, M. C. Engels, A. A. F. de Vries, A. V. Panfilov, and D. A. Pijnappels, Sci. Rep. 6, 24334 (2016).

    Article  ADS  Google Scholar 

  17. K. Agladze, M. W. Kay, V. Krinsky, and N. Sarvazyan, Am. J. Physiol. 293, H503 (2007).

    Google Scholar 

  18. K. Agladze, Á. Tóth, T. Ichino, and K. Yoshikawa, J. Phys. Chem. A 104, 6679 (2000).

    Google Scholar 

  19. R. Majumder, R. Pandit, and A. V. Panfilov, Am. J. Physiol. 307, H1024 (2014).

    Google Scholar 

  20. V. N. Kachalov, N. N. Kudryashova, and K. I. Agladze, JETP Lett. 104, 635 (2016).

    Article  ADS  Google Scholar 

  21. M. Tanaka, A. Isomura, M. Hörning, H. Kitahata, and K. Agladze, Chaos 19, 1 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Agladze.

Additional information

The article is published in the original.

Electronic supplementary material

11448_2017_1576_MOESM1_ESM.pdf

Supplemental Material to the article “Success of spiral wave unpinning from the heterogeneity in a cardiac tissue depends on its boundary conditions”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachalov, V.N., Tsvelaya, V.A., Kudryashova, N.N. et al. Success of spiral wave unpinning from heterogeneity in a cardiac tissue depends on its boundary conditions. Jetp Lett. 106, 608–612 (2017). https://doi.org/10.1134/S0021364017210019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364017210019

Navigation