A Nanosecond Electron Accelerator with a Heterogeneous Transmission Line and a Gas-Filled Diode

Abstract—This paper describes the design and parameters of a nanosecond accelerator with an additional transmission line that has variable wave impedance and a gas-filled diode. The possibility of controlling the beam current parameters by changing the air pressure in the diode is shown. Behind the anode foil, at a half-maximum pulse width of ≈1.3 ns and an electron energy of up to 350 keV, the beam current amplitude was ≈700 A. Vavilov–Cherenkov radiation spectra and oscillograms were recorded when were excited by the electron beam of this accelerator. quartz, sapphire, and synthetic diamond were excited by the electron beam of this accelerator.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    Martin, T.H., IEEE Trans. Nucl. Sci., 1973, vol. 20, no. 3, p. 289. https://doi.org/10.1109/TNS.1973.4327103

    ADS  Article  Google Scholar 

  2. 2

    Mehnert, R., Nucl. Instrum. Methods Phys. Res.,Sect. B, 1996, vol. 113, nos. 1–4, p. 81. https://doi.org/10.1016/0168-583X(95)01344-X

    Article  Google Scholar 

  3. 3

    Zheltov, K.A., Pikosekundnye sil’notochnye elektronnye uskoriteli (Picosecond High-Current Electron Accelerators), Moscow: Energoatomizdat, 1991.

  4. 4

    Mesyats, G.A., Impul’snaya energetika i elektronika (Pulse Power and Electronic Engineering), Moscow: Nauka, 2004.

  5. 5

    Zelenskii, K.F., Troshkin, I.A., and Tsukerman, V.A., Prib. Tekh. Eksp., 1963, no. 2, p. 140.

  6. 6

    Charbonnier, F.M., Barbour, J.P., Brewster, J.L., Dyke, W.P., and Grundhauser, F.J., IEEE Trans. Nucl. Sci., 1967, vol. 14, no. 3, p. 789. https://doi.org/10.1109/TNS.1967.4324658

    ADS  Article  Google Scholar 

  7. 7

    Belkin, N.V., Komyak, N.I., Peliks, E.A., and Tsukerman, V.A., Prib. Tekh. Eksp., 1972, no. 2, p. 194.

  8. 8

    Koval’chuk, B.M., Mesyats, G.A., and Shpak, V.G., Prib. Tekh. Eksp., 1976, no. 6, p. 73.

  9. 9

    Belkin, N.V., Tarakanov, M.Yu., and Tarasov, M.D., Prib. Tekh. Eksp., 1987, no. 6, p. 133.

  10. 10

    Zagulov, F.Ya., Kotov, A.S., Shpak, V.G., Yurike, Ya.Ya., and Yalandin, M.I., Prib. Tekh. Eksp., 1989, no. 2, p. 146.

  11. 11

    Zheltov, K.A., Korobkov, S.A., Petrenko, A.N., and Shalimanov, V.F., Prib. Tekh. Eksp., 1990, no. 1, p. 37.

  12. 12

    Aduev, B.P. and Shpak, V.G., Prib. Tekh. Eksp., 1990, no. 2, p. 49.

  13. 13

    Gubanov, V.P., Korovin, S.D., Pegel, I.V., Roitman, A.M., Rostov, V.V., and Stepchenko, A.S., IEEE Trans. Plasma Sci., 1997, vol. 25, no. 2, p. 258. https://doi.org/10.1109/27.602497

    ADS  Article  Google Scholar 

  14. 14

    Kotov, Yu.A. and Sokovnin, S.Yu., Instrum. Exp. Tech., 1997, vol. 40, no 4, pp. 513–515.

    Google Scholar 

  15. 15

    Yalandin, M.I. and Shpak, V.G., Instrum. Exp. Tech., 2001, vol. 44, no 3, pp. 285–310.

    Article  Google Scholar 

  16. 16

    Hasegawa, D., Kamada, K., Kuraku, A., Ando, R., and Masuzaki, M., Jpn. J. Appl. Phys., 2001, vol. 40, no. 2B, p. 944. https://doi.org/10.1143/JJAP.40.944

    ADS  Article  Google Scholar 

  17. 17

    Kostyrya, I.D., Rybka, D.V., and Tarasenko, V.F., Instrum. Exp. Tech., 2012, vol. 55, no. 1, pp. 72–77. https://doi.org/10.1134/S0020441212010071

    Article  Google Scholar 

  18. 18

    Sokovnin, S.Yu., Balezin, M.E., and Shcherbinin, S.V., Instrum. Exp. Tech., 2013, vol. 56, no. 4, pp. 411–413. https://doi.org/10.1134/S0020441213040106

    Article  Google Scholar 

  19. 19

    Kumar, R., Chandra, R., Mitra, S., Beg, M.D., Sharma, D.K., Sharma, A., and Mittal, K.C., J. Instrum., 2014, vol. 9, no. 4, p. 04017. https://doi.org/10.1088/1748-0221/9/04/P04017

    Article  Google Scholar 

  20. 20

    Avilov, E.A., Belkin, N.V., Dudin, A.V., Zykov, A.P., Kanunov, M.A., and Razin, A.A., Prib. Tekh. Eksp., 1973, no. 1, p. 137.

  21. 21

    Rukin, S.N., Rev. Sci. Instrum., 2020, vol. 91, no. 1, p. 011501. https://doi.org/10.1063/1.5128297

    ADS  Article  Google Scholar 

  22. 22

    Romanchenko, I.V., Rostov, V.V., Gunin, A.V., and Konev, V.Y., Rev. Sci. Instrum., 2017, vol. 88, no. 2, p. 024703. https://doi.org/10.1063/1.4975182

    ADS  Article  Google Scholar 

  23. 23

    Gusev, A.I., Pedos, M.S., Rukin, S.N., and Timoshenkov, S.P., Rev. Sci. Instrum., 2017, vol. 88, no. 7, p. 074703. https://doi.org/10.1063/1.4993732

    ADS  Article  Google Scholar 

  24. 24

    Burachenko, A.G. and Tarasenko, V.F., Tech. Phys. Lett., 2010, vol. 36, no. 12, pp. 1158–1161. https://doi.org/10.1134/S1063785010120278

    ADS  Article  Google Scholar 

  25. 25

    Alekseev, S.B., Rybka, D.V., and Tarasenko, V.F., Instrum. Exp. Tech., 2013, vol. 56, no 5, pp. 571–575. https://doi.org/10.1134/S0020441213040131

    Article  Google Scholar 

  26. 26

    Lomaev, M.I., Tarasenko, V.F., and Baksht, E.Kh., Tech. Phys., 2019, vol. 64, no. 8, pp. 1200–1204. https://doi.org/10.1134/S1063784219080115

    Article  Google Scholar 

  27. 27

    Tarasenko, V.F. and Rybka, D.V., High Voltage, 2016, vol. 1, no. 1, p. 43. https://doi.org/10.1049/hve.2016.0007

    Article  Google Scholar 

  28. 28

    Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Lomaev, M.I., and Sorokin, D.A., IEEE Trans. Plasma Sci., 2010, vol. 38, no. 10, p. 2583. https://doi.org/10.1109/TPS.2010.2041474

    ADS  Article  Google Scholar 

  29. 29

    Tarasenko, V.F., Oleshko, V.I., Erofeev, M.V., Lipatov, E.I., Beloplotov, D.V., Lomaev, M.I., Burachenko, A.G., and Baksht, E.Kh., J. Appl. Phys., 2019, vol. 125, no. 24, p. 244501. https://doi.org/10.1063/1.5094956

    ADS  Article  Google Scholar 

  30. 30

    Kostyrya, I.D., Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Lomaev, M.I., and Rybka, D.V., Tech. Phys. Lett., 2009, vol. 35, no. 11, pp. 1012–1015.

    ADS  Article  Google Scholar 

  31. 31

    Baksht, E.H., Burachenko, A.G., Kozhevnikov, V.Yu., Kozyrev, A.V., Kostyrya, I.D., and Tarasenko, V.F., J. Phys. D: Appl. Phys., 2010, vol. 43, no. 30, p. 305201. https://doi.org/10.1088/0022-3727/43/30/305201

    Article  Google Scholar 

  32. 32

    Kozyrev, A.V., Kozhevnikov, V.Yu., Vorobyev, M.S., Baksht, E.Kh., Burachenko, A.G., Koval, N.N., and Tarasenko, V.F., Laser Part. Beams, 2015, vol. 33, no. 2, p. 183. https://doi.org/10.1017/S0263034615000324

    ADS  Article  Google Scholar 

Download references


This work was carried out as part of the project of the Russian Science Foundation no. 18-19-00184.

Author information



Corresponding author

Correspondence to E. Kh. Baksht.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tarasenko, V.F., Alekseev, S.B., Baksht, E.K. et al. A Nanosecond Electron Accelerator with a Heterogeneous Transmission Line and a Gas-Filled Diode. Instrum Exp Tech 63, 359–363 (2020). https://doi.org/10.1134/S0020441220040090

Download citation