Skip to main content
Log in

A Spectrometer for Measuring the Characteristics of a Single Laser-Accelerated Electron Bunch with a Small Charge

  • NUCLEAR EXPERIMENT TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The principles and results of the development of an electron spectrometer for a facility for the laser acceleration of electrons, which is being created at the Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, jointly with the Institute of Nuclear Physics (BINP), Siberian Branch, Russian Academy of Sciences, are described. The spectrometer uses a permanent dipole magnet and a phosphor screen and is designed for an energy range of 15–150 MeV. The main requirements that determine the features of this spectrometer are as follows: the location of the basic elements in a vacuum chamber of limited volume and operation in the mode of single pulses at small charges in a pulse, at a level of 1–10 pC. Methods for selecting the measurement scheme and geometry and the requirements for the elements that constitute the spectrometer and their selection are described. It is demonstrated that the beam collimation at the spectrometer entrance allows achievement of an energy resolution of up to 5% at the high-energy limit of the measurement range. The results of testing a spectrometer prototype on the VEPP-5 beam at the BINP, at which the sensitivity of registering the charge density at a level of 0.01 pC/mm2 was experimentally achieved, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Leemans, W.P., Gonsalves, A.J., Mao, H.-S., Nakamura, K., Benedetti, C., Schroeder, C.B., Tóth, Cs., Daniels, J., Mittelberger, D.E., Bulanov, S.S., Vay, J.-L., Geddes, C.G.R., and Esarey, E., Phys. Rev. Lett., 2014, vol. 113, p. 45002. https://doi.org/10.1103/physrevlett.113.245002

    Article  Google Scholar 

  2. Hyung Taek Kim, Ki Hong Pae, Hyuk Jin Cha, I Jong Kim, Tae Jun Yu, Jae Hee Sung, Seong Ku Lee, Tae Moon Jeong, and Jongmin Lee, Phys. Rev. Lett., 2013, vol. 111, p. 165002. https://doi.org/10.1103/PhysRevLett.111.165002

    Article  ADS  Google Scholar 

  3. Hafz, N.A., Li, S., Li, G., Mirzaie, M., Zeng, M., and Zhang, J., High Power Laser Sci. Eng., 2016, vol. 4, p. e24. https://doi.org/10.1017/hpl.2016.25

    Article  Google Scholar 

  4. Goers, A.J., Hine, G.A., Feder, L., Miao, B., Salehi, F., Wahlstrand, J.K., and Milchberg, H.M., Phys. Rev. Lett., 2015, vol. 115, no. 19, p. 194802. https://doi.org/10.1103/PhysRevLett.115.194802

    Article  ADS  Google Scholar 

  5. Salehi, F., Goers, A.J., Hine, G.A., Feder, L., Kuk, D., Miao, B., and Milchberg, H.M., Opt. Lett., 2017, vol. 42, no. 2, p. 215. https://doi.org/10.1364/OL.42.000215

    Article  ADS  Google Scholar 

  6. Leshchenko, V.E., Trunov, V.I., Frolov, S.A., Pestryakov, E.V., Vasiliev, V.A., Kvashnin, N.L., and Bagayev, S.N., Laser Phys. Lett., 2014, vol. 11, p. 095301. https://doi.org/10.1088/1612-2011/11/9/095301

    Article  ADS  Google Scholar 

  7. Trunov, V.I., Lotov, K.V., Gubin, K.V., Pestryakov, E.V., Bagayev, S.N., and Logachev, P.V., J. Phys.: Conf. Ser., 2017, vol. 793, p. 012028. https://doi.org/10.1088/1742-6596/793/1/012028

    Article  Google Scholar 

  8. Karsch, S., Osterhoff, J., Popp, A., Rowlands-Rees, T.P., Major, Zs., Fuchs, M., Marx, B., Hörlein, R., Schmid, K., Veisz, L., Becker, S., Schramm, U., Hidding, B., Pretzler, G., Habs, D., et al., New J. Phys., 2007, vol. 9, no. 11, p. 415. https://doi.org/10.1088/1367-2630/9/11/415

    Article  ADS  Google Scholar 

  9. Gubin, K.V., Trunov, V.I., Gambaryan, V.V., Levichev, A.E., Maltseva, Yu.I., Martyshkin, P.V., Pachkov, A.A., and Peshekhonov, S.N., Rev. Sci. Instrum., 2018, vol. 89, no. 6. https://doi.org/10.1063/1.5022845

  10. Nakamura, K., Wan, W., Ybarrolaza, N., Syversrud, D., Wallig, J., and Leemans, W.P., Rev. Sci. Instrum., 2008, vol. 79, p. 053301. https://doi.org/10.1063/1.2929672

    Article  ADS  Google Scholar 

  11. Soloviev, A.A., Starodubtsev, M.V., Burdonov, K.F., Kostyukov, I.Y., Nerush, E.N., Shaykin, A.A., and Khazanov, E.A., Rev. Sci. Instrum., 2011, vol. 82, no. 4, p. 043304. https://doi.org/10.1063/1.3585862

    Article  ADS  Google Scholar 

  12. http://www.muonsinternal.com.

  13. Nakamura, K., Gonsalves, A.J., Lin, C., Smith, A., Rodgers, D., Donahue, R., Byrne, W., and Leemans, W.P., Phys. Rev. Spec. Top.–Accel. Beams, 2011, vol. 14, no. 6, p. 062801. https://doi.org/10.1103/PhysRevSTAB.14.062801

    Article  ADS  Google Scholar 

  14. Buck, A., Zeil, K., Popp, A., Schmid, K., Jochmann, A., Kraft, S.D., Hidding, B., Kudyakov, T., Sears, C.M.S., Veisz, L., Karsch, S., Pawelke, J., Sauerbrey, R., Coman, T.E., Krausz, F., and Schramm, U., Rev. Sci. Instrum., 2010, vol. 81, no. 3, p. 033301. https://doi.org/10.1063/1.3310275

    Article  ADS  Google Scholar 

  15. Komarskiy, A.A., Chepusov, A.S., Kuznetsov, V.L., Korzhenevskiy, S.R., Niculin, S.P., and Cholakh, S.O., J. Biosci. Med., 2014, vol. 2, p. 17. https://doi.org/10.4236/jbm.2014.22003

    Article  Google Scholar 

  16. Golovkova, S.I. and Rüdiger, J., Biomed. Eng., 2016, vol. 50, no. 2, p. 105. https://doi.org/10.1007/s10527-016-9598-y

    Article  Google Scholar 

  17. Aleksandrov, A., Pavlov, V.M., Sharapa, A.N., Mironenko, L.A., Gubin, K., Kuklin, D.Ye., Shemyakin, A., Galimov, R.Kh., Skarbo, B.A., Dikanskij, N.S., Boimel’shtein, Yu.M., Bąk, P., Novokhatskii, A.S., Chupyra, A., Rezakov, B.A., et al., Proc. Int. Linear Accelerator Conference LINAC96, Geneva, August 26–30, 1996, CERN-1996-007, p. 821. https://doi.org/10.5170/CERN-1996-007.821

  18. Avilov, M.S., Akimov, A.V., Antoshin, A.V., Bak, P.A., Boimel’shtein, Y.M., Bolkhovityanov, D.Yu., Galimov, R.Kh., Gromov, R.G., Gubin, K., Gurov, S.M., Gusev, E.A., Dikanskii, N.S., Kazarezov, I.V., Klyu-shchev, S.N., Kokoulin, V.I., et al., At. Energy, 2003, vol. 94, no. 1, p. 50. https://doi.org/10.1023/A:1023498704950

    Article  Google Scholar 

Download references

Funding

This study was supported by the Program of Basic Research of the Presidium of the Russian Academy of Sciences Extreme Laser Radiation: Physics and Fundamental Applications (project no. 115113010008) of the ILP and the Program of the Foundation of Scientific Research of State Academies of Sciences, Topic no. 15.4.3. Investigation of New Methods for Accelerating Charged Particles (no. 0305-2014-0016) at the BINP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ottmar.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubin, K.V., Mal’tseva, Y.I., Ottmar, A.V. et al. A Spectrometer for Measuring the Characteristics of a Single Laser-Accelerated Electron Bunch with a Small Charge. Instrum Exp Tech 63, 325–333 (2020). https://doi.org/10.1134/S0020441220040053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441220040053

Navigation