Skip to main content
Log in

Development and Characterization of a white Led-Based Spectrophotometer for UV/VIS Gaseous Pollutants Detection Employing Michelson Interferometer and an Optical Filtering System

  • Physical Instruments for Ecology, Medicine, and Biology
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Aim of this paper is the design of an absorption spectrophotometer based on LED technology presenting several advantages such as high luminous efficiency, reliability, long operating duration, low maintenance and low power consumption besides the reduction of analyte temperature variations which occur if Xenon light source is used. An optical filtering system was realized to detect analyte absorption for each wavelength range selected by proper optical filters; also to characterize filtered light beam in terms of its coherence length, thus correlating measured absorption spectrum with light source characteristics, the Michelson interferometer was used. Realized white LED-based spectrophotometer can be used to monitor air quality in hospital rooms or to detect atmospheric pollution deriving from vehicular traffic and different typology of pollutants (e.g., heavy metals deriving by industrial activities). A PC-interfaced control unit acquires and processes raw data provided by sensors (pressure, temperature, humidity, luminosity) and manages the optical filtering system motion by actuating a stepper motor. Whole system operation was tested and obtained results confirm the proper functioning and correct interaction, through PC terminal, between user and control unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Q., Wang, F., Aleck Wang, Z., Yuan, D., Dai, M., Chen, J., Dai, J., and Hoering, K.A., Environ. Sci. Technol., 2013, vol. 47, p. 11139. doi 10.1021/es402421a

    Article  ADS  Google Scholar 

  2. Lay-Ekuakille, A., Vergallo, P., Morello, R., and De Capua, C., Measurement, 2014, vol. 47, p. 749. doi 10.1016/j.measurement.2013.09.040

    Article  Google Scholar 

  3. Lay-Ekuakille, A., Palamara, I., Caratelli, D., and Morabito, F.C., Rev. Sci. Instrum., 2013, vol. 84, p. 015103-1. doi 10.1063/1.4772576

    Article  ADS  Google Scholar 

  4. Lay-Ekuakille, A., Vendramin, G., and Trotta, A., Sens. Actuators, B, 2009, vol. 135, p. 411. doi 10.1016/j.snb.2008.09.041

    Article  Google Scholar 

  5. Laqua, K., Melhuish, W.H., and Zander, M., Pure Appl. Chem., 1988, vol. 60, no. 9, p. 1449. doi 10.1351/pac198860091449

    Article  Google Scholar 

  6. Alippi, C., Camplani, R., Galperti, C., and Roveri, M., IEEE Sens. J., 2011, vol. 11, p. 45. doi 10.1109/JSEN.2010.2051539

    Article  Google Scholar 

  7. Muravyov, S.V., Spiridonova, A.S., Gavrilenko, N.A., Baranov, P.F., and Khudonogova, L.I., Instrum. Exp. Tech., 2016, vol. 59, no. 4, p. 592. doi 10.1134/S0020441216030210

    Article  Google Scholar 

  8. Alukera, N.L., Suzdaltsevaa, J.M., Herrmannc, M., and Dulepovaa, A.C., Instrum. Exp. Tech., 2016, vol. 59, no. 5, p. 733. doi 10.1134/S002044121605002X

    Article  Google Scholar 

  9. Nawrocka, A. and Lamorska, J., “Determination of Food Quality by Using Spectroscopic Methods,” in Advances in Agrophysical Research, Grundas, S. and Stepniewski, A., Eds., Rijeka: InTech, 2013, ch. 14. doi 10.5772/52722

    Google Scholar 

  10. Pacquit, A., Lau, K., McLaughlin, H., Frisby, J., Quilty, B., and Diamond, D., Talanta, 2006, vol. 69, p. 515. doi 10.1016/j.talanta.2005.10.046

    Article  Google Scholar 

  11. Walker, J.T., N. Engl. J. Med., 1949, vol. 240, p. 200. doi 10.1056/NEJM194902032400512

    Article  Google Scholar 

  12. Ionel, I. and Popescu, F., in Methods for Online Monitoring of Air Pollution Concentration. Air Quality, Ed. by Ashok Kumar, InTech, 2010. doi 10.5772/9754. http://www.intechopen.com/books/air-quality/methods-for-online-monitoring-of-air-pollution-concentration.

    Google Scholar 

  13. Lepot, M., Torres, A., Hofer, T., Caradot, N., Gruber, G., Aubin, J.B., and Bertrand-Krajewski, J., Water Res., 2016, vol. 101, p. 519. doi 10.1016/j.watres.2016.05.070

    Article  Google Scholar 

  14. Visconti, P., Ferri, R., Pucciarelli, M., and Venere, E., Int. J. Smart Sens. Intell. Syst., 2016, vol. 9, no. 4, p. 1637. SCOPUS 2-s2.0-85005963745

    Google Scholar 

  15. Primiceri, P., Visconti, P., Melpignano, A., Vilei, A., and Colleoni, G.M., Int. J. Smart Sens. Intell. Syst., 2016, vol. 9, no. 3, p.1534. SCOPUS 2-s2.0-84992448380

    Google Scholar 

  16. Visconti, P., Orlando, C., and Primiceri, P., Proc. IEEE 16th Int. Conf. on Environment and Electrical Engineering, Florence, June 7–10, 2016. doi 10.1109 /EEEIC.2016.7555638

  17. Jankovec, M., Galliano, F., Annigoni, E. Yu., Li, H., Sculati-Meillaud, F., Perret-Aebi, L.E., Ballif, C., and Topic, M., IEEE J. Photovoltaics, 2016, vol. 6, p. 1152. doi 10.1109/JPHOTOV.2016.2583779

    Article  Google Scholar 

  18. Lunca, E., Ursache, S., and Vasniuc, A., in Proc. 9th Int. Symp. on Advanced Topics In Electrical Engineering, Bucharest, Romania, May 7–9, 2015, INSPEC Accession Number 15240882. doi 10.1109/ATEE.2015. 7133668

  19. Visconti, P., Primiceri, P., Costantini, P., Colangelo, G., and Cavalera, G., Int. J. Smart Sens. Intell. Syst., 2016, vol. 9, no. 3, p. 1220, SCOPUS 2-s2.0-84992450119

    Google Scholar 

  20. Chatterjee, K., Mahato, S.N., Chattopadhyay, S., and De, D., Instrum. Exp. Tech., 2017, vol. 60, no. 1, p. 154. doi 10.1134/S0020441217010055

    Article  Google Scholar 

  21. Visconti, P., Primiceri, P., and Cavalera, G., in Proc. IEEE 2016 Workshop on Environmental, Energy and Structural Monitoring Systems (EESMS), Bari, Italy, June 13–14, 2016. doi 10.1109/EESMS.2016. 7504805

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Visconti.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visconti, P., Primiceri, P., de Fazio, R. et al. Development and Characterization of a white Led-Based Spectrophotometer for UV/VIS Gaseous Pollutants Detection Employing Michelson Interferometer and an Optical Filtering System. Instrum Exp Tech 61, 283–291 (2018). https://doi.org/10.1134/S0020441218020252

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441218020252

Navigation