Instruments and Experimental Techniques

, Volume 61, Issue 2, pp 313–316 | Cite as

A Method for Reducing the Threshold Dose of Irradiation with Hydrogen Ions for Forming Blisters in Silicon

  • V. F. Reutov
  • S. N. Dmitriev
  • A. G. Zaluzhnyi
Laboratory Techniques


We consider the conditions for reducing the threshold dose of radiation-gas splitting of a silicon single crystal by using a fixed-energy two-stage irradiation with hydrogen ions in a single production cycle. It has been experimentally established that a well-developed blister structure is formed in a sample in the mode of its two-stage irradiation with hydrogen ions with E = 12.5 keV and a dose of 0.5 × 1016 cm–2 at a normal angle of incidence at the first stage and, then, with a dose of 1.0 × 1016 cm−2 at an angle of 32° at the second stage (the total dose is 1.5 × 1016 cm–2). This structure is similar to the structure in a sample irradiated in the mode of single-stage irradiation to a dose of 5 × 1016 cm–2. This fact is the indication that the conditions for more than a threefold decrease in the threshold for the formation of hydrogen blisters in silicon upon twostage irradiation with monoenergetic hydrogen ions in a single production cycle.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reutov, V.F. and Ibragimov, Sh.Sh., USSR Inventor’s Certificate no. 1282757, Byull. Izobret., 2000, no.18.Google Scholar
  2. 2.
    Bruel, M., US Patent 5374564. H01L021/76, 1995.Google Scholar
  3. 3.
    Bruel, M., Electron. Lett., 1995, vol. 31, no. 14, p. 1201.CrossRefGoogle Scholar
  4. 4.
    Henley, F., Lamm, A., Kang, S., Liu, Z., and Tiam, L., Proc. of 23rd European Photovoltaic Solar Energy Conf., Valencia, Spain, 2008, p. 1090.Google Scholar
  5. 5.
    Zaluzhnyi, A.G., Sokurskii, S.N., and Tebus, V.N., Gelii v reaktornykh materialah (Helium in Reactor Materials), Moscow: Energoatomizdat, 1988, p.160.Google Scholar
  6. 6.
    Moutanabbir, O., Giguere, A., and Terreault, B., Appl. Phys. Lett., 2004, vol. 84, p. 3286.ADSCrossRefGoogle Scholar
  7. 7.
    Lie, X., Cheung, N.W., Strathman, M.D., Chu, P.K., and Doele, B., Appl. Phys. Lett., 1997, vol. 71, p. 1804.ADSCrossRefGoogle Scholar
  8. 8.
    Agarwall, A. and Haynes, T.E., Appl. Phys. Lett., 1998, vol. 72, p. 1086.ADSCrossRefGoogle Scholar
  9. 9.
    Weldon, M.K., Marsico, V.E., Chabal, Y.J., Agarwal, A., and Eaglesham, D.J., J. Vac. Sci. Technol., 1997, no. 15, p. 1065.CrossRefGoogle Scholar
  10. 10.
    Zaluzhnyi, A.G., Kopytin, V.P., Kozodaev, M.A., and Suvorov, A.L., Yad. Fiz., 2005, vol. 68, no. 8, p.1.Google Scholar
  11. 11.
    Bedell, S.W., and Lanford, W.A., J. Appl. Phys., 2001, vol. 90, no. 3, p. 1139.ADSCrossRefGoogle Scholar
  12. 12.
    Hochbauer, T., Misra, A., Nastasi, M., and Mayer, J.W., J. Appl. Phys., 2002, vol. 92, no. 5, p. 2335.ADSCrossRefGoogle Scholar
  13. 13.
    Desrosiers, N. and Terreault, B., Appl. Phys. Lett., 2006, vol. 89, p. 151922.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. F. Reutov
    • 1
  • S. N. Dmitriev
    • 1
  • A. G. Zaluzhnyi
    • 2
  1. 1.Flerov Laboratory of Nuclear ReactionsJoint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  2. 2.National Research Nuclear UniversityMoscow Engineering Physics InstituteMoscowRussia

Personalised recommendations