Skip to main content
Log in

Status and possibilities of the time-of-flight measurement technique using long scintillation counters with a small cross section (Review)

  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Results of the analysis of the state-of-the-art time-of-flight measurement technique with the use of long scintillation counters with a small cross section (the length of the counter far exceeds its width in the plane of the hodoscope and thickness along the beam direction), which are used as basic elements of time-of-flight detectors for large physical installations and intended for identifying secondary particles generated during collisions of high-energy particles. The following issues are considered in this review. Various methods for identifying particles are compared, and it is pointed out that the time-of-flight method has certain advantages for secondary particles with momenta higher than ∼3–5 GeV/c. Some elements incorporated in scintillation counters and affecting its time resolution are considered: optical fibers, optical contacts in the scintillator-fiber-photodetector system, and high-frequency cables. Their characteristics are presented. The characteristics of all elements of a counter (scintillator, photodetector (PD), and electronics) and the processes occurring in them are discussed. The presented experimental data show that, under the conditions of high counting rates and strong magnetic fields, the working capacity of counters holds at a time resolution of ∼100–200 ps. The results of measuring the operating characteristics of counters are analyzed. The dependences of the time resolution on such variables as the coordinate of the particle transit through a counter along its length, the counter length, the light-absorption length in the scintillator, the quality of treatment of the scintillator’s surface, and the energy deposited by a particle in the scintillator substance are considered. The main characteristics of individual time counters and average parameters of time-of-flight detectors in certain physical facilities are presented. Possible ways to improve the time resolution and reduce it to ∼50–100 ps are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klempt, W., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 433, nos. 1–2, p. 542; Akimov, V.A., Akindinov, A.V., Boyarinov, S.V., et al., Prib. Tekh. Eksp., 2002, no. 4, p. 63 [Instrum. Exp. Tech. (Engl. Transl.), no. 4, p. 493]; Prib. Tekh. Eksp., 2004, no. 5, p. 24 [Instrum. Exp. Tech. (Engl. Transl.), no. 5, p. 589].

    Article  ADS  Google Scholar 

  2. Nakano, E., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 494, nos. 1–3, p. 402.

    Article  ADS  Google Scholar 

  3. Glassel, P., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 433, nos. 1–2, p. 17.

    Article  ADS  Google Scholar 

  4. Leith, D.W.G.S., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 494, nos. 1–3, p. 389.

    Article  ADS  Google Scholar 

  5. Nappi, E., Preprint CERN-EP/99-149, 1999.

  6. Nappi, E., Nucl. Phys. B (Proc. Suppl.), 1991, vol. 61, no. 3, p. 270.

    Article  ADS  Google Scholar 

  7. Seguinot, J., Preprint CERN-EP/89-92, 1989.

  8. Ypsilantis, T., Preprint CERN-EP/89-150, 1989.

  9. Hauschild, M., Nucl. Instrum. Methods Phys. Res. A, 1996, vol. 379, no. 3, p. 436.

    Article  ADS  Google Scholar 

  10. Va’vra, J., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 543, no. 1, p. 262.

    Article  Google Scholar 

  11. Llope, W.J., Geurts, F., Mitchell, J.W., et al., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 522, no. 3, p. 252.

    Article  ADS  Google Scholar 

  12. Lacasse, R., Barette, J., Dai, Y., et al., Nucl. Instrum. Methods Phys. Res. A, 1998, vol. 408, nos. 2–3, p. 408.

    Article  Google Scholar 

  13. Cabrera, S., Fernandez, J., Gomez, G., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 494, nos. 1–3, p. 416.

    Article  ADS  Google Scholar 

  14. Adeva, B., Gallas, M.V., Gomez, F., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 491, nos. 1–2, p. 41.

    Article  ADS  Google Scholar 

  15. Agodi, C., Bassi, A., Bassini, R., et al., IEEE Nucl. Sci., 1998, vol. NS45, p. 665.

    Article  Google Scholar 

  16. Agodi, C., Bassi, A., Bassini, R., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 492, nos. 1–2, pp. 14–25.

    Article  ADS  Google Scholar 

  17. D’Agostini, C., Marini, G., Martelotti, G., et al., Preprint CERN-EP/80-228, 1980.

  18. Alde, D., Bellazzini, R., Binon, F.G., et al., Nucl. Instrum. Methods Phys. Res. A, 1994, vol. 342, nos. 2–3, p. 389.

    Article  ADS  Google Scholar 

  19. Alvisi, D., Anselmo, F., Baldini, L., et al., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 437, nos. 2–3, p. 212.

    Article  ADS  Google Scholar 

  20. Atwood, W.B., Preprint SLAC-PUB-2620, 1980.

  21. Afanas’ev, S.I., Isupov, A.Yu., Kolesnikov, V.I., et al., Kratk. Soobshch. OIYaI, 1997, no. 5, p. 69.

  22. Afanas’ev, S.I., Isupov, A.Yu., Kolesnikov, V.I., et al., Kratk. Soobshch. OIYaI, 1997, no. 1, p. 45.

  23. Baldo-Ceolin, M., Barichello, G., Bobisut, F., et al., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 532, no. 3, p. 548.

    Article  ADS  Google Scholar 

  24. Benerjee, S., Beery, P.D., Biswas, N.N., et al., Nucl. Instrum. Methods Phys. Res. A, 1990, vol. 269, no. 1, p. 121.

    Article  ADS  Google Scholar 

  25. Bellamy, E.H., Belletini, G., Budagov, J., et al., Nucl. Instrum. Methods Phys. Res. A, 1994, vol. 343, nos. 2–3, p. 484.

    Article  ADS  Google Scholar 

  26. Berlman, I.B., Handbook of Fluorescence Spectra of Aromatic Molecules, New York: Academy, 1965.

    Google Scholar 

  27. Bohm, A., Brinkman, K.-Th., Dshemushadse, S., et al., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 443, nos. 2–3, p. 238.

    Article  ADS  Google Scholar 

  28. Bonazzola, G.C., Botta, E., Bressani, T., et al., Nucl. Instrum. Methods Phys. Res. A, 1995, vol. 356, no. 2–3, p. 270.

    Article  ADS  Google Scholar 

  29. Bonesini, M., Ferri, F., Giovoni, P., et al., IEEE Trans. Nucl. Sci., 2003, vol. 50, no. 4, p. 1053.

    Article  Google Scholar 

  30. Brown, J.S., Burnetti, T.H., Cook, V., et al., Nucl. Instrum. Methods Phys. Res. A, 1984, vol. 221, no. 3, p. 503.

    Article  Google Scholar 

  31. Braunschweig, J.S., Königs, E., Sturm, W., et al., Nucl. Instrum. Methods Phys. Res. A, 1976, vol. 134, no. 1, p. 261.

    Google Scholar 

  32. Carlen, L., Chenawi, K.El., Chujo, T., et al., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 431, nos. 1–2, p. 123.

    Article  ADS  Google Scholar 

  33. Casadei, D., Bodini, L., Bindi, V., et al., Nucl. Phys. B, Proc. Suppl., 2002, vol. 113, p. 133

    Article  ADS  Google Scholar 

  34. Chen, E., Saulinier, M., Sun, W., et al., hep-ex/9606007, 1996.

  35. Denisov, S., Dzierba, A., Heinz, R., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 472, no. 3, p. 440.

    Article  ADS  Google Scholar 

  36. Denisov, S., Dzierba, A., Heinz, R., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 494, nos. 1–3, p. 495.

    Article  ADS  Google Scholar 

  37. Denisov, S., Dzierba, A., Heinz, R., et al., Nucl. Instrum. Methods, 2004, vol. 525, nos. 1–2, p. 183.

    ADS  Google Scholar 

  38. Denisov, S.P., Dzierba, A., Klimenko, A.K., et al., Prib. Tekh. Eksp., 2006, no. 4, p. 50 [Instrum. Exp. Tech. (Engl. Transl.), no. 4, p. 494].

  39. Dossi, R., Ianni, A., Ranucci, G., and Smirno, O.Ju., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 451, no. 3, p. 627.

    Article  ADS  Google Scholar 

  40. Filippini, V. and Marchesotti, M., Nucl. Instrum. Methods Phys. Res. A, 2001, vol. 457, nos. 1–2, p. 279.

    Article  ADS  Google Scholar 

  41. Foucher M., Herudon M., and Jawakery H, Nucl. Instrum. Methods Phys. Res. A, 1996, vol. 374, no. 1, p. 57.

    Article  ADS  Google Scholar 

  42. Fujii, Y., Oshima, T., Shirai, J., et al., Nucl. Instrum. Methods Phys. Res. A, 1995, vol. 364, no. 2, p. 282.

    Article  ADS  Google Scholar 

  43. Grabmayr, C., Hehl, T., Stahl, A., et al., Nucl. Instrum. Methods Phys. Res. A, 1998, vol. 402, no. 1, p. 85.

    Article  ADS  Google Scholar 

  44. http://pdg.lbl.gov/Experimental Methods and Colliders.

  45. Heller, R., Klinger, T., Salomon, R., et al., Nucl. Instrum. Methods Phys. Res. A, 1985, vol. 235, no. 1, p. 26.

    Article  ADS  Google Scholar 

  46. Kichimi, H., Yoshimura, Y., Browder, T., et al., Nucl. Instrum. Methods, 2000, vol. 453, nos. 1–2, p. 315.

    ADS  Google Scholar 

  47. Kishida, T., Kuze, M., Sai, F., et al., Nucl. Instrum. Methods Phys. Res. A, 1987, vol. 254, no. 2, p. 367.

    Article  ADS  Google Scholar 

  48. Kubota, Y., Nelson, J.K., Perticone, D., et al., Nucl. Instrum. Methods Phys. Res. A, 1992, vol. 320, nos. 1–2, p. 66.

    Article  ADS  Google Scholar 

  49. Kurata, M., Kato, S., Kumagai, A., et al., Nucl. Instrum. Methods Phys. Res. A, 1994, vol. 349, nos. 2–3, p. 447.

    Article  ADS  Google Scholar 

  50. Lu, J., Hu, J., Zheng, Y., et al., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 437, nos. 2–3, p. 206.

    Article  ADS  Google Scholar 

  51. Michel, P., Moller, K., Naumann, B., et al., Nucl. Instrum. Methods Phys. Res. A, 1998, vol. 408, nos. 2–3, p. 453.

    Article  Google Scholar 

  52. Moszynski, M., Nucl. Instrum. Methods Phys. Res. A, 1979, vol. 58, no. 1, p. 1.

    Google Scholar 

  53. Nishimura, S., Kurata-Nishimura, M., Morimoto, K., and Nishi, Y., Nucl. Instrum. Methods Phys. Res. A, 2003, vol. 510, no. 3, p. 377.

    Article  ADS  Google Scholar 

  54. Palla, G., Csato, P., Fodor, Z., et al., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 451, no. 2, p. 406.

    Article  ADS  Google Scholar 

  55. Paus, Ch., Grozis, C., Kephart, R., et al., Nucl. Instrum. Methods Phys. Res. A, 2001, vol. 461, no. 3, p. 579.

    Article  ADS  Google Scholar 

  56. Perrino, R., Cisbani, E., DeLeo, R., et al., Nucl. Instrum. Methods Phys. Res. A, 1996, vol. 381, nos. 2–3, p. 324.

    Article  ADS  Google Scholar 

  57. Rabin, N.V., Vasil’ev D.A., Vladimirov, S.V., et al., Prib. Tekh. Eksp., 2000, no. 4, p. 5 [Instrum. Exp. Tech. (Engl. Transl.), 2000, vol. 43, no. 4, p. 435].

  58. Shikaze, Y., Orito, S., Mitsui, T., et al., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 455, no. 3, p. 596.

    Article  ADS  Google Scholar 

  59. Smith, E.S., Carstens, T., Distelbrink, J., et al., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 432, nos. 2–3, p. 265.

    Article  ADS  Google Scholar 

  60. Sugitate, T., Akiba, Y., Hayashi, S., et al., Nucl. Instrum. Methods Phys. Res. A, 1986, vol. 249, nos. 2–3, p. 354.

    Article  ADS  Google Scholar 

  61. Sum, V., Berdoz, A.R., Davis, C.A., et al., Nucl. Instrum. Methods Phys. Res. A, 1993, vol. 326, no. 3, p. 489.

    Article  ADS  Google Scholar 

  62. Tanimori, T., Kageyawa, T., Yoshika, M., et al., Nucl. Instrum. Methods Phys. Res. A, 1983, vol. 216, no. 1, p. 57.

    Article  Google Scholar 

  63. Tsujita, Y., Asano, Y., Hamasaki, H., et al., Nucl. Instrum. Methods Phys. Res. A, 1996, vol. 383, nos. 2–3, p. 413.

    Article  ADS  Google Scholar 

  64. Ukegawa, F., Heinrich, J.G., Lockyer, N.S., et al., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 439, no. 1, p. 65.

    Article  ADS  Google Scholar 

  65. Wu, J., Bonner, B., Chen, H.F., et al., Nucl. Instrum. Methods Phys. Res. A, 2005, vol. 538, nos. 1–3, p. 243.

    Article  ADS  Google Scholar 

  66. Alexandrov, K.V., Barbarino, G.C., Bernardino, P., et al., Nucl. Instrum. Methods Phys. Res. A, 2001, vol. 459, nos. 1–2, p. 123.

    Article  ADS  Google Scholar 

  67. Leutz, H., Nucl. Instrum. Methods Phys. Res. A, 1995, vol. 364, no. 3, p. 422.

    Article  ADS  Google Scholar 

  68. Daito I., Gorin A., Hasegawa T., et al., Nucl. Instrum. Methods. Phys. Res. A, 1999, vol. 433, no. 3, p. 587.

    Article  ADS  Google Scholar 

  69. Ferrer, A., Garcia-Jareno, M.A., Horwitz, N., and Sanchis, E., Nucl. Instrum. Methods Phys. Res. A, 1996, vol. 371, no. 3, p. 39.

    Article  Google Scholar 

  70. Hawkes, C.M., Kuhlen, M., Milliken, B., et al., Nucl. Instrum. Methods Phys. Res. A, 1990, vol. 292, no. 2, p. 329.

    Article  ADS  Google Scholar 

  71. Cub, J., Stengel, G., Grunschlop, A., et al., Nucl. Instrum. Methods Phys. Res. A, 1998, vol. 402, no. 1, p. 67.

    Article  ADS  Google Scholar 

  72. Kühlen, M., Moszynski, M., Stroynowski, R., and Wicklund, E., Nucl. Instrum. Methods Phys. Res. A, 1991, vol. 301, no. 2, p. 223.

    Article  ADS  Google Scholar 

  73. Lawrence, O.J., Barbier, L.M., Beatty, J.J., et al., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 420, no. 3, p. 402.

    Article  ADS  Google Scholar 

  74. Bisplinghoff, J., Evershein, D., Eyrich, W., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 490, nos. 1–2, p. 101.

    Article  ADS  Google Scholar 

  75. Ghal-Eh, N., Scott, M.C., Koohi-Fayegh, R., and Rahimi, M.F., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 516, no. 1, p. 116.

    Article  ADS  Google Scholar 

  76. Levi, G., Martelli, R., and Sbarra, C., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 530, no. 3, p. 419.

    Article  ADS  Google Scholar 

  77. Nam, J.W., Yoi, Y.I., Kim, D.W., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 491, nos. 1–2, p. 54.

    Article  ADS  Google Scholar 

  78. Suda, R., Watanable, M., Enomoto, R., et al., Nucl. Instrum. Methods Phys. Res. A, 1998, vol. 406, no. 2, p. 213.

    Article  ADS  Google Scholar 

  79. Yang, X.H., Nayak, T.K., Chi, C.Y., et al., Nucl. Instrum. Methods Phys. Res. A, 1995, vol. 354, nos. 2–3, p. 270.

    Article  ADS  Google Scholar 

  80. Gatti, E. and Svelto, V., Nucl. Instrum. Methods Phys. Res. A, 1966, vol. 43, p. 248.

    Article  Google Scholar 

  81. Berkovskii, A.G., Gavanin, V.A., and Zaidel’, I.N., Elektrovakuumnye pribory (Electronic Tubes), Moscow: Energiya, 1976.

    Google Scholar 

  82. Euling, R.H., J. Appl. Phys., 1964, vol. 35, no. 5, p. 1391.

    Article  ADS  Google Scholar 

  83. Ahmad, S., Bonner, B.E., Gere, W., et al., Nucl. Instrum. Methods Phys. Res. A, 1993, vol. 330, no. 3, p. 416.

    Article  ADS  Google Scholar 

  84. Ahmad, S., Bonner, B.E., Llope, W.J., et al., Nucl. Instrum. Methods Phys. Res. A, 1997, vol. 400, no. 1, p. 149.

    Article  ADS  Google Scholar 

  85. Appuhn, R.-D., Arndt, C., Barrelet, E., et al., Nucl. Instrum. Methods Phys. Res. A, 1998, vol. 404, nos. 2–3, p. 265.

    Article  ADS  Google Scholar 

  86. Barbarino, G.C., Bernardini, P., Brigida, M., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 483, no. 3, p. 660.

    Article  ADS  Google Scholar 

  87. Bellamy, G.C., Belletin, G., Budagov, J., et al., Nucl. Instrum. Methods Phys. Res. A, 1994, vol. 339, no. 3, p. 468.

    Article  ADS  Google Scholar 

  88. Belyanchenko, S.A., Brekhovskikh, V.V., Dakor, S.C., et al., Preprint of Inst. for High Energy Phys., Protvino, 1995, no. 95-12.

  89. Bourgeois, Ph., Karolak, M., and Vasseur, G., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 442, nos. 1–3, p. 105.

    Article  ADS  Google Scholar 

  90. Bonesini, M., Ferrari, P., Gumenyuk, S., et al., Nucl. Instrum. Methods Phys. Res. A, 1997, vol. 387, nos. 1–2, p. 60.

    Article  ADS  Google Scholar 

  91. Feofilov, G.A., Stolyarov, O.I., Tsimbal, F.A., et al., Nucl. Instrum. Methods Phys. Res. A, 1995, vol. 367, nos. 1–3, p. 402.

    Article  ADS  Google Scholar 

  92. Giles, R.T., Pipkin, F.M., and Wolinski, J.P., Nucl. Instrum. Methods Phys. Res. A, 1986, vol. 252, no. 1, p. 41.

    Article  ADS  Google Scholar 

  93. Hokuue, T., Akatsu, M., Enari, Y., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 494, nos. 1–3, p. 436.

    Article  ADS  Google Scholar 

  94. Iijima, T., Amami, M., Adachi, I., et al., Nucl. Instrum. Methods Phys. Res. A, 1997, vol. 387, nos. 1–2, p. 64.

    Article  ADS  Google Scholar 

  95. Janoth, J., Lindner, A., Walther, A., et al., Nucl. Instrum. Methods Phys. Res. A, 1994, vol. 350, p. 221.

    Article  ADS  Google Scholar 

  96. Kichimi, H., Sagawa, H., and Yoshimura, Y., Nucl. Instrum. Methods Phys. Res. A, 1993, vol. 325, p. 451.

    Article  ADS  Google Scholar 

  97. Moszynski, M., Nucl. Instrum. Methods Phys. Res. A, 1993, vol. 337, p. 154.

    Article  ADS  Google Scholar 

  98. Anzivino, G., Arnaudon, H., Baillon, P., et al., Nucl. Instrum. Methods Phys. Res. A, 1985, vol. 365, no. 1, p. 76.

    Article  ADS  Google Scholar 

  99. Arnaudon, H., Benetti, P., Boskma, L., et al., Nucl. Instrum. Methods Phys. Res. A, 1994, vol. 342, nos. 2–3, p. 558.

    Article  ADS  Google Scholar 

  100. Basa, S., Clements, J.-C., Commerçon, M., et al., Nucl. Instrum. Methods Phys. Res. A, 1993, vol. 330, nos. 1, p. 93.

    Article  ADS  Google Scholar 

  101. Bencheikh, B., DeSalvo, R., Hao, W., et al., Nucl. Instrum. Methods Phys. Res. A, 1992, vol. 315, no. 3, p. 349.

    Article  ADS  Google Scholar 

  102. Benetti, P., Boskma, L., Burger, P., et al., Nucl. Instrum. Methods Phys. Res. A, 1995, vol. 367, no. 1–3, p. 384.

    Article  ADS  Google Scholar 

  103. Chesi, E., Martinengo, P., Weilhammer, P., et al., Nucl. Instrum. Methods Phys. Res. A, 1997, vol. 387, nos. 1–2, p. 122.

    Article  ADS  Google Scholar 

  104. Cushman, P., Heering, A., and Ronzhin, A., Nucl. Instrum. Methods Phys. Res. A, 1998, vol. 418, nos. 2–3, p. 300.

    Article  ADS  Google Scholar 

  105. Damiani, C., Del Guerra, A., DeSalvo, R., et al., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 442, nos. 1–3, p. 136.

    Article  ADS  Google Scholar 

  106. Datema, C.P., Pleasants, I.B., and Ramsden, D., Nucl. Instrum. Methods Phys. Res. A, 1997, vol. 387, nos. 1–2, p. 100.

    Article  ADS  Google Scholar 

  107. DeSalvo, R., Hao, W., You, K., et al., Nucl. Instrum. Methods Phys. Res. A, 1992, vol. 315, nos. 1–3, p. 375.

    Article  ADS  Google Scholar 

  108. DeSalvo, R., Nucl. Instrum. Methods Phys. Res. A, 1997, vol. 387, nos. 1–2, p. 92.

    Article  ADS  Google Scholar 

  109. Elias, J.E., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 442, nos. 1–3, p. 1.

    Article  ADS  Google Scholar 

  110. Farell, R., Shah, K., Vanderouye, K., et al., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 442, nos. 1–3, p. 171.

    Article  ADS  Google Scholar 

  111. Filippini, V., Marchesotti, M., and Merciano, C., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 424, nos. 2–3, p. 343.

    Article  ADS  Google Scholar 

  112. Kanaya, N., Fujii, Y., Hara, K., et al., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 421, no. 3, p. 512.

    Article  ADS  Google Scholar 

  113. Kanaya, N., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 442, nos. 1–3, p. 512.

    Google Scholar 

  114. Kirn, Th., Musienko, Y., Flugel, Th., and Renker, D., Nucl. Instrum. Methods Phys. Res. A, 1997, vol. 387, nos. 1–2, p. 199.

    Article  ADS  Google Scholar 

  115. Marchesotti, M., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 442, nos. 1–3, p. 285.

    Article  ADS  Google Scholar 

  116. Mirzoyan, R., Ference, D., and Lorenz, E., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 442, nos. 1–3, p. 140.

    Article  ADS  Google Scholar 

  117. Ott, R.J., White, L., Duxbury, D., et al., Nucl. Instrum. Methods Phys. Res. A, 2003, vol. 513, nos. 1–2, p. 19.

    Article  ADS  Google Scholar 

  118. Park, Ch., Hi, Nucl. Instrum. Methods Phys. Res. A, 2003, vol. 504, nos. 1–3, p. 14.

    Article  ADS  Google Scholar 

  119. Yoshizawa, Y. and Takeuchi, J., Nucl. Instrum. Methods Phys. Res. A, 1997, vol. 387, nos. 1–2, p. 33.

    Article  ADS  Google Scholar 

  120. Arnaldi, R., Baldit, A., Barret, V., et al., Nucl. Instrum. Methods Phys. Res. A, 2001, vol. 457, nos. 1–2, p. 117.

    Article  ADS  Google Scholar 

  121. Balla, A., Benussi, L., Bertrani, M., et al., Nucl. Instrum. Methods Phys. Res. A, 2001, vol. 461, nos. 1–3, p. 524.

    Article  ADS  Google Scholar 

  122. Bardelli, L., Bini, M., Poggi, G., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 491, nos. 1–2, p. 244.

    Article  ADS  Google Scholar 

  123. Bardelli, L., Poggi, G., Bini, M., et al., Nucl. Instrum. Methods Phys. Res. A, 2004, vol. 521, no. 3, p. 480.

    Article  ADS  Google Scholar 

  124. Baturitsky, M.A. and Dvornikov, O.V., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 428, nos. 2–3, p. 478.

    Article  ADS  Google Scholar 

  125. Belyaev, V.N., Kovalen’, V.Yu., and Shaigabdinov, A.R., Prib. Tekh. Eksp., 1993, no. 5, p. 97.

  126. Frolov, A.R., Oslopov, T.V., and Pestov, Yu.N., Nucl. Instrum. Methods Phys. Res. A, 1995, vol. 356, nos. 2–3, p. 447.

    Article  ADS  Google Scholar 

  127. Hyman, L.G., Schwarcz, R.M., and Schluter, R.A., Nucl. Instrum. Methods Phys. Res. A, 1964, vol. 35, no. 3, p. 393.

    Google Scholar 

  128. Gedcke, D.A. and McDonald, W.J., Nucl. Instrum. Methods Phys. Res. A, 1968, vol. 58, no. 2, p. 253.

    Article  Google Scholar 

  129. Meleshko, E.A., Nanosekundnaya elektronika v eksperimental’noi fizike (Nanosecond Electronics in Experimental Physics), Moscow: Energoatomizdat, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.V. Rabin, 2007, published in Pribory i Tekhnika Eksperimenta, 2007, No. 5, pp. 5–67.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabin, N.V. Status and possibilities of the time-of-flight measurement technique using long scintillation counters with a small cross section (Review). Instrum Exp Tech 50, 579–638 (2007). https://doi.org/10.1134/S0020441207050016

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441207050016

PACS numbers

Navigation