Structural Disorder and Heat Capacity of a Solid Solution between Cadmium and Strontium Fluorides

Abstract—

The heat capacity Cp(T) of cadmium fluoride, strontium fluoride, and the Cd0.5Sr0.5F2 solid solution has been studied experimentally (2–300 K). We have detected deviations ΔCp(T) of the Cp(T) data from additivity. The low-temperature (2–50 K), positive deviations ΔCp(T) have been tentatively attributed to the effect of two-level systems associated with the glasslike character of the low-temperature thermal properties of the solution due to disorder in the Cd–Sr sublattice. The high-temperature (100–300 K), negative deviations ΔCp(T) are caused by the effect of anharmonicity of lattice vibrations, whose increasing role is also associated with the disordered arrangement of atoms in the crystal lattice upon formation of the solution. The Cp(T) data for the solution of the system studied have been analyzed in the Debye–Einstein model. We have determined model parameters: characteristic temperatures Θi and the fractions of different contributions, ai, to total thermal characteristics of the substances studied.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Crundwell, G.A., Cowans, B.A., Hopkins, J.A., Grutzner, J.B., and Kahr, B., Vegard’s rule revisited in BaxPb1 –x(NO3)2 by NMR and XRD, J. Solid State Chem., 1999, vol. 145, pp. 327–335.https://doi.org/10.1006/jssc.1999.8288

    CAS  Article  Google Scholar 

  2. 2

    Mukherjee, S., Ranjan, V., Gupta, R., and Garg, A., Compositional dependence of structural parameters, polyhedral distortion and magnetic properties of gallium ferrite, Solid State Commun., 2012, vol. 152, pp. 1181–1185.https://doi.org/10.1016/j.ssc.2012.03.010

    CAS  Article  Google Scholar 

  3. 3

    Magalhães, S., Franco, N., Watson, I., Martin, R., Donnell, O., Schenk, H., and Tang, F., Validity of Vegard’s rule for Al1 –x InxN (0.08 < x < 0.28) thin films grown on GaN templates, J. Phys. D: Appl. Phys., 2017, vol. 50, paper 205107.

  4. 4

    Schenk, M. and Silber, C., Solid-solution hardening and Vegard’s rule of In1 –xGaxSb, J. Mater. Sci. – Mater. Electron., 1998, vol. 9, pp. 313–316.https://doi.org/10.1023/A:1008837008832

    CAS  Article  Google Scholar 

  5. 5

    Terada, Y., Ohkubo, K., and Mohri, T., Thermal conductivity in nickel solid solutions, J. Appl. Phys., 1997, vol. 81, pp. 2263–2268.https://doi.org/10.1063/1.364254

    CAS  Article  Google Scholar 

  6. 6

    Rogacheva, E.I., Doroshenko, A.N., Nashchekina, O.N., and Men’shov, Yu.V., Thermal conductivity in Bi1 –xSbx solid solutions, J. Electron. Mater., 2013, vol. 42, no. 7, pp. 2098–2102.https://doi.org/10.1007/s11664-013-2534-y

    CAS  Article  Google Scholar 

  7. 7

    Abrahams, M.S., Braunstein, R., and Rosi, D., Thermal, electrical and optical properties of (In,Ga)As alloys, J. Phys. Chem. Solids, 1959, vol. 10, pp. 204–210.https://doi.org/10.1016/0022-3697(59)90076-9

    CAS  Article  Google Scholar 

  8. 8

    Zamyatin, D.A., Shchapova, Yu.V., Votyakov, S.L., Eremin, N.N., and Urusov, V.S., Structure and thermodynamic properties of zircon–coffinite solid solutions according to the semiempirical atomistic simulation data, Glass Phys. Chem., 2013, vol. 39, no. 2, pp. 182–192.https://doi.org/10.1134/S108765961302017X

    CAS  Article  Google Scholar 

  9. 9

    Parshin, D.A., Interactions of soft atomic potentials and universality of low-temperature properties of glasses, Phys. Rev. B: Condens. Matter Mater. Phys., 1994, vol. 49, pp. 9400–9417.https://doi.org/10.1103/PhysRevB.49.9400

    CAS  Article  Google Scholar 

  10. 10

    Novikov, V.V., Zhemoedov, N.A., Matovnikov, A.V., Mitroshenkov, N.V., Kuznetsov, S.V., and Bud’ko, S.L., Negative thermal expansion and anomalies of heat capacity of LuB50 at low temperatures, Dalton Trans., 2015, vol. 44, no. 36, pp. 15865–15871.https://doi.org/10.1039/C5DT01406A

    CAS  Article  PubMed  Google Scholar 

  11. 11

    De Kozak, A., Samouel, M., and Chretien, A., Misibility crystalline des fluorures de calcium, de strontium et de plomb dans de fluorine de cadmium, Rev. Chim. Miner., 1971, vol. 8, pp. 805–811.

    CAS  Google Scholar 

  12. 12

    Buchinskaya, I.I. and Fedorov, P.P., A new optical medium—Cd0.75Sr0.25F2 single crystals, Crystallogr. Rep., 2004, vol. 49, no. 2, pp. 279–281.https://doi.org/10.1134/1.1690431

    CAS  Article  Google Scholar 

  13. 13

    Novikov, V.V., Mitroshenkov, N.V., Matovnikov, A.V., Avdashchenko, D.V., Trubnickov, S.V., and Morozov, A.V., Peculiarities of the lattice thermal properties of rare-earth tetraborides, J. Therm. Anal. Calorim., 2015, vol. 120, no. 3, pp. 1597–1602.https://doi.org/10.1007/s10973-015-4475-6

    CAS  Article  Google Scholar 

  14. 14

    Novikov, V.V., Chukina, T.A., and Verevkin, A.A., Anomalies in thermal expansion of rare-earth diborides in the temperature range of magnetic phase transformations, Phys. Solid State, 2010, vol. 52, no. 2, pp. 364–369.https://doi.org/10.1134/S106378341002023X

    CAS  Article  Google Scholar 

  15. 15

    Novikov, V.V., Avdashchenko, D.V., Matovnikov, A.V., Moiseev, N.V., Budko, S.L., and Tanaka, T., Thermal and magnetic properties of DyB62 at low temperatures, Phys. B: Condens. Matter, 2011, vol. 406, no. 13, pp. 2642–2645.https://doi.org/10.1016/j.physb.2011.04.006

    CAS  Article  Google Scholar 

  16. 16

    Novikov, V.V., Mitroshenkov, N.V., Matovnikov, A.V., and Kuznetsov, S.V., Specific features of lattice dynamics of (CaF2)x(SrF2)(1 –x) solid solutions, Mater. Chem. Phys., 2020, vol. 240, paper 122247.https://doi.org/10.1016/j.matchemphys.2019.122247

  17. 17

    Gavrichev, K.S., Fedorov, P.P., Tyurin, A.V., Ryumin, M.A., Khoroshilov, A.V., and Buchinskaya, I.I., Heat capacity and thermodynamic functions of cadmium fluoride, Russ. J. Inorg. Chem., 2009, vol. 54, no. 9, pp. 1445–1450.https://doi.org/10.1134/S0036023609090174

    Article  Google Scholar 

  18. 18

    Ryzhova, E.A., Molchanov, V.N., Artyukhov, A.A., Simonov, V.I., and Sobolev, B.P., Growth and defect crystal structure of CdF2 and nonstoichiometric Cd1 –xRxF2 +x phases (R = rare earth elements and In). 2. Methods of structure refinement of Cd0.90R0.10F2.10 phases using the example of Cd0.90Tb0.10F2.10. structure of nanodimensional clusters in Cd0.90Tb0.10F2.10 crystal, Crystallogr. Rep., 2004, vol. 49, no. 4, pp. 668–675.https://doi.org/10.1134/1.1780622

    CAS  Article  Google Scholar 

  19. 19

    Soni, H.R., Gupta, S.K., Talati, M., and Jha, P.K., Ground state and lattice dynamical study of ionic conductors CaF2, SrF2 and BaF2 using density functional theory, J. Phys. Chem. Solids, 2011, vol. 72, pp. 934–939.https://doi.org/10.1016/j.jpcs.2011.04.018

    CAS  Article  Google Scholar 

  20. 20

    Novikov, V.V., Matovnikov, A.V., Avdashchenko, D.V., Mitroshenkov, N.V., Dikarev, E., Takamizawa, S., Kirsanova, M.A., and Shevelkov, A.V., Low-temperature structure and lattice dynamics of the thermoelectric clathrate Sn24P19.3I8, J. Alloys Compd., 2012, vol. 520, pp. 174–179.https://doi.org/10.1016/j.jallcom.2011.12.171

    CAS  Article  Google Scholar 

  21. 21

    Novikov, V., Pilipenko, K., Matovnikov, A., Mitroshenkov, N., Plokhikh, I., Tyablikov, A., and Shevelkov, A., Structure-related thermal properties of type-VII clathrates SrNi2P4 and BaNi2P4 at low temperature, Phys. Status Solidi B, 2018, vol. 255, no. 8, paper 1800067.https://doi.org/10.1002/pssb.201800067

  22. 22

    Tari, A., The Specific Heat of Matter at Low Temperatures, London: Imperial College Press, 2003.

    Google Scholar 

  23. 23

    Novikov, V.V., Mitroshenkov, N.V., Kuznetsov, S.V., Popov, P.A., Buchinskaya, I.I., Karimov, D.N., and Koshelev, A.V., Anharmonicity of lattice vibrations and the thermal properties of Cd1 –xSrxF2 solid solutions, Phys. Solid State, 2020, vol. 62, no. 4, pp. 714–721.

    Article  Google Scholar 

  24. 24

    Shein, I.R., Novikov, V.V., Kuznetsov, S.V., Ponkratov, K.V., Matovnikov, A.V., Mitroshenkov, N.V., Kornev, B.I., Morozov, A.V., and Prishchep, V.L., Thermodynamic properties and lattice dynamics investigation of LuB2C: experiment and ab-initio calculations, Phys. Chem. Chem. Phys., 2019, vol. 21, pp. 24684–24694.https://doi.org/10.1039/c9cp02880c

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Wrubel, J.P., Hubbard, B.E., Agladze, N.I., Sievers, A.J., Fedorov, P.P., and Campbell, J.A., Glasslike two-level systems in minimally disordered mixed crystals, Phys. Rev. Lett., 2006, vol. 96, paper 235503.https://doi.org/10.1103/PhysRevLett.96.235503

  26. 26

    Abeles, B., Lattice thermal conductivity of disordered semiconductor alloys at high temperatures, Phys. Rev., 1963, vol. 131, no. 51, pp. 1906–1011.https://doi.org/10.1103/PhysRev.131.1906

    Article  Google Scholar 

  27. 27

    Kittel, C., Introduction to Solid State Physics, New York: Wiley, 1953.

    Google Scholar 

  28. 28

    Mukherjee, G.D., Bansal, C., and Chatterjee, A., Thermal expansion study of ordered and disordered Fe3Al: an effective approach for the determination of vibrational entropy, Phys. Rev. Lett., 1996, vol. 76, pp. 1876–1879.https://doi.org/10.1103/PhysRevLett.76.1876

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research and Bryansk oblast administration, grant. no. 18-42-320002.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. V. Novikov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Novikov, V.V., Matovnikov, A.V., Mitroshenkov, N.V. et al. Structural Disorder and Heat Capacity of a Solid Solution between Cadmium and Strontium Fluorides. Inorg Mater 56, 626–632 (2020). https://doi.org/10.1134/S0020168520060096

Download citation

Keywords:

  • solid solutions
  • heat capacity
  • Debye–Einstein model
  • low temperatures
  • anharmonicity