Growth and Thermophysical Properties of RAl3(BO3)4 (R = Y, Nd, Gd, Lu) and RMgB5O10 (R = Y, La, Gd) Crystals

Abstract—

We have optimized conditions for the flux growth of the RAl3(BO3)4 (R = Y, Nd, Gd, Lu) and RMgB5O10 (R = Y, La, Gd) rare-earth borates and measured the thermal conductivity of YAl3(BO3)4, NdAl3(BO3)4, GdAl3(BO3)4, LuAl3(BO3)4, and LaMgB5O10 crystals. The results strongly suggest that these materials are potentially attractive for use as laser gain elements.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

REFERENCES

  1. 1

    Mills, A.D., Crystallographic data for new rare earth borate compounds, RX3(BO3)4, Inorg. Chem., 1962, vol. 1, pp. 960–961.

    CAS  Article  Google Scholar 

  2. 2

    Ballman, A.A., A new series of synthetic borates isostructural with the carbonate mineral huntite, Am. Mineral., 1962, vol. 47, pp. 1380–1383.

    CAS  Google Scholar 

  3. 3

    Leonyuk, N.I. and Leonyuk, L.I., Growth and characterization of RM3(BO3)4 crystals, Prog. Cryst. Growth Charact., 1995, vol. 31, nos. 3–4, pp. 179–278.https://doi.org/10.1016/0960-8974(96)83730-2

    CAS  Article  Google Scholar 

  4. 4

    Dekker, P., Dawes, J.M., Piper, J.A., Liu, Y., and Wang, J.A., 1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser, Opt. Commun., 2001, vol. 195, nos. 5–6, pp. 431–436.https://doi.org/10.1016/S0030-4018(01)01347-5

    CAS  Article  Google Scholar 

  5. 5

    Jiang, H., Li, J., Wang, J., Hu, X.B., Liu, H., Teng, B., Zhang, Ch.Q., Dekker, P., and Wang, P., Growth of Yb:YAl3(BO3)4 crystals and their optical and self-frequency-doubling properties, J. Cryst. Growth, 2001, vol. 233, nos. 1–2, pp. 248–252. https://doi.org/10.1016/S0022-0248(01)01562-7

    CAS  Article  Google Scholar 

  6. 6

    Li, J., Xu, G., Han, S., Fan, J., and Wang, J., Growth and optical properties of self-frequency-doubling laser crystal Yb:LuAl3(BO3)4, J. Cryst. Growth, 2009, vol. 311, no. 17, pp. 4251–4254.https://doi.org/10.1016/j.jcrysgro.2009.05.036

    CAS  Article  Google Scholar 

  7. 7

    Leonyuk, N.I., Maltsev, V.V., Volkova, E.A., Pilipenko, O.V., Koporulina, E.V., Kisel, V.E., Tolstik, N.A., Kurilchik, S.V., and Kuleshov, N.V., Crystal growth and laser properties of new RAl3(BO3)4 (R = Yb, Er) crystals, Opt. Mater., 2007, vol. 30, pp. 161–163.https://doi.org/10.1016/j.optmat.2006.11.017

    CAS  Article  Google Scholar 

  8. 8

    Tolstik, N.A., Kurilchik, S.V., Kisel, V.E., Kuleshov, N.V., Maltsev, V.V., Pilipenko, O.V., Koporulina, E.V., and Leonyuk, N.I., Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl3(BO3)4 laser, Opt. Lett., 2007, vol. 32, no. 22, pp. 3233–3235.https://doi.org/10.1364/OL.32.003233

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Lagatsky, A.A., Sibbett, W., Kisel, V.E., Troshin, A.E., Tolstik, N.A., Kuleshov, N.V., Leonyuk, N.I., Zhukov, A.E., and Rafailov, E.U., Diode-pumped passively mode-locked Er,Yb:YAl3(BO3)4 laser at 1.5–1.6 μm, Opt. Lett., 2008, vol. 33, no. 1, pp. 83–85.https://doi.org/10.1364/OL.33.000083

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Kisel, V.E., Gorbachenya, K.N., Yasukevich, A.S., Ivashko, A.M., Kuleshov, N.V., Maltsev, V.V., and Leonyuk, N.I., Passively Q-switched microchip Er,Yb:YAl3(BO3)4 diode-pumped laser, Opt. Lett., 2012, vol. 37, no. 13, pp. 2745–2747.https://doi.org/10.1364/OL.37.002745

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Gorbachenya, K.N., Kisel, V.E., Yasukevich, A.S., Maltsev, V.V., Leonyuk, N.I., and Kuleshov, N.V., Highly efficient continuous-wave diode-pumped Er,Yb:GdAl3(BO3)4 laser, Opt. Lett., 2013, vol. 38, no. 14, pp. 2446–2448.https://doi.org/10.1364/OL.38.002446

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Maltsev, V.V., Leonyuk, N.I., Naprasnikov, D.A., Gorbachenya, K.N., Kisel, V.E., Yasukevich, A.S., and Kuleshov, N.V., Flux growth and laser-related spectroscopic properties of (Er,Yb):LuAl3(BO3)4 crystals, CrystEngComm, 2016, vol. 18, pp. 2725–2734.https://doi.org/10.1039/C6CE00281A

    CAS  Article  Google Scholar 

  13. 13

    Dorozhkin, L.M., Kuratev, I.I., Leonyuk, N.I., Timchenko, T.I., and Shestakov, A.V., Second harmonic generation in (Nd,Y)Al3(BO3)4 crystals, a new nonlinear active medium, Pis’ma Zh. Eksp. Teor. Fiz., 1981, vol. 7, no. 21, pp. 1297–1299.

    CAS  Google Scholar 

  14. 14

    Saubat, B., Vlasse, M., and Fouassier, C., Synthesis and structural study of the new rare earth magnesium borates LnMgB5O10 (Ln = La, …, Er), J. Solid State Chem., 1980, vol. 34, no. 3, pp. 271–277.https://doi.org/10.1016/0022-4596(80)90425-9

    CAS  Article  Google Scholar 

  15. 15

    Chen, H., Huang, Y., Li, B., Liao, W., Zhang, G., and Lin, Z., Efficient orthogonally polarized dual-wavelength Nd:LaMgB5O10 laser, Opt. Lett., 2015, vol. 40, no. 20, pp. 4659–4662.https://doi.org/10.1364/OL.40.004659

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Huang, Y., Zhou, W., Sun, S., Yuan, F., Zhang, L., Zhao, W., Wang, G., and Lin, Z., Growth, structure, spectral and laser properties of Yb3+:LaMgB5O10—a new laser material, CrystEngComm, 2015, vol. 17, pp. 7392–7397.https://doi.org/10.1039/C5CE01443C

    CAS  Article  Google Scholar 

  17. 17

    Sokolova, E.V., Azizov, A.V., Leonyuk, N.I., Simonov, M.A., and Belov, N.V., Crystal structure of synthetic Al-ortho-3-borate, Dokl. Akad. Nauk SSSR, 1978, vol. 243, no. 3, pp. 655–658.

    CAS  Google Scholar 

  18. 18

    Huang, Y., Chen, H., Sun, S., Yuan, F., Zhang, L., Lin, Z., Zhang, G., and Wang, G., Growth, thermal, spectral and laser properties of Nd3+:LaMgB5O10 crystal—a new promising laser material, J. Alloys Compd., 2015, vol. 646, pp. 1083–1088.https://doi.org/10.1016/j.jallcom.2015.06.196

    CAS  Article  Google Scholar 

  19. 19

    Huang, Y., Sun, S., Yuan, F., Zhang, L., and Lin, Z., Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal, J. Alloys Compd., 2017, vol. 695, pp. 215–220.https://doi.org/10.1016/j.jallcom.2016.10.115

    CAS  Article  Google Scholar 

  20. 20

    Huang, Y., Yuan, F., Sun, S., Lin, Z., and Zhang, L., Thermal, spectral and laser properties of Er3+:Yb3+:GdMgB5O10: a new crystal for 1.5 μm lasers, Materials, 2018, vol. 11, no. 25, pp. 2–9.https://doi.org/10.3390/ma11010025

    CAS  Article  Google Scholar 

  21. 21

    Novozhilov, V.I., Leonyuk, N.I., Terekhova, V.M., and Samoilovich, M.I., EPR of trivalent lead in synthetic YAl3(BO3)4 crystals, Zh. Strukt. Khim., 1979, vol. 20, no. 5, pp. 929–931.

    CAS  Google Scholar 

  22. 22

    Koporulina, E.V., Leonyuk, N.I., Barilo, S.N., Kurnevich, L.A., Bychkov, G.L., Mokhov, A.V., Bocelli, G., and Righi, L., Flux growth, composition, structural and thermal characteristics of (RxY1 –x)Al3(BO3)4 (R = Nd, Gd; x = 1, 0.6, 0.65, 0.7, and 0.75) crystals, J. Cryst. Growth, 1999, vols. 198–199, pp. 460–465.https://doi.org/10.1016/S0022-0248(98)01228-7

    Article  Google Scholar 

  23. 23

    Levin, E.M., Roth, E.S., and Martin, J.B., Polymorphism of ABO3 type rare earth borates, Am. Mineral., 1961, vol. 46, pp. 1030–1055.

    CAS  Google Scholar 

  24. 24

    Fang, S., Liu, H., and Ye, N., Growth and thermophysical properties of nonlinear optical crystal LuAl3(BO3)4, Cryst. Growth Des., 2011, vol. 11, no. 11, pp. 5048–5052.https://doi.org/10.1021/cg2009418

    CAS  Article  Google Scholar 

  25. 25

    Li, J., Li, Q., Wang, J., Zhao, H., and Liang, X., Growth, thermal and optical properties of Yb:GdYAl3(BO3)4, Opt. Mater., 2007, vol. 29, no. 12, pp. 1741–1745.https://doi.org/10.1016/j.optmat.2006.09.019

    CAS  Article  Google Scholar 

  26. 26

    Pilipenko, O.V., Maltsev, V.V., Leonyuk, N.I., et al., Flux growth and thermal conductivity of rare-earth aluminum orthoborate crystals, FIS Conf. on Crystal Growth, Kharkiv, 2012, p. 155.

Download references

Funding

The experiments aimed at optimizing the growth conditions and measuring the thermal conductivity of the borate crystals were supported in part by the Russian Foundation for Basic Research, grant nos. 18-05-01085a (yttrium aluminum and neodymium aluminum borates) and 18-29-12091mk (GdAl3(BO3)4 and LuAl3(BO3)4).

The investigation of the growth conditions and thermal conductivity of the LaMgB5O10 crystals was supported in part by the Russian Science Foundation, grant no. 19-12-00235.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. V. Maltsev.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maltsev, V.V., Volkova, E.A., Mitina, D.D. et al. Growth and Thermophysical Properties of RAl3(BO3)4 (R = Y, Nd, Gd, Lu) and RMgB5O10 (R = Y, La, Gd) Crystals. Inorg Mater 56, 612–625 (2020). https://doi.org/10.1134/S0020168520060084

Download citation

Keywords:

  • crystal growth
  • flux growth process
  • rare-earth borates
  • laser materials
  • nonlinear optical crystals