Cathode Materials Based on Lithium Iron Phosphate/PEDOT Composites for Lithium-Ion Batteries


Composites based on LiFePO4/C and poly(3,4-ethylenedioxythiophene) (LiFePO4/C/PEDOT) have been prepared via in situ oxidative EDOT polymerization or mechanical mixing of LiFePO4/C with presynthesized PEDOT particles, including those prepared in the presence of different surfactants (Triton X-100 and cetyltrimethylammonium bromide). The resultant materials have been characterized by X-ray diffraction, scanning electron microscopy, CNHS analysis, and IR spectroscopy. At high current densities, the best electrochemical performance has been demonstrated by the composite prepared by mechanical mixing of LiFePO4/C with a PEDOT suspension in acetonitrile (70 mAh/g at a current density of 1600 mA/g). Further increase in the discharge capacity of the LiFePO4/C/PEDOT composites at high current densities has been ensured by precoating LiFePO4/C particles with the Triton X-100 surfactant (81 mAh/g at 1600 mA/g).

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    Yaroslavtsev, A.B., Stenina, I.A., Kulova, T.L., Skundin, A.M., and Desyatov, A.V., Nanomaterials for electrical energy storage, Comprehensive Nanoscience and Nanotechnology, Andrews, D.L. et al., Eds., vol. 5: Application of Nanoscience, Bradshaw, D.S., Ed., Amsterdam: Elsevier, 2019, 2nd ed., chapter 5.07, pp. 165–206.

  2. 2

    Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Electrode nanomaterials for lithium-ion batteries, Russ. Chem. Rev., 2015, vol. 84, no. 8, pp. 826–852.

    CAS  Article  Google Scholar 

  3. 3

    Juner, Z., Wierzbicki, T., and Li, W., A review of safety-focused mechanical modeling of commercial lithium-ion batteries, J. Power Sources, 2018, vol. 378, pp. 153–168.

    CAS  Article  Google Scholar 

  4. 4

    Yun, N.J., Ha, H.-W., Jeong, K.H., Park, H.-Y., and Kim, K., Synthesis and electrochemical properties of olivine-type LiFePO4/C composite cathode material prepared from a poly(vinyl alcohol)-containing precursor, J. Power Sources, 2006, vol. 160, no. 2, pp. 1361–1368.

    CAS  Article  Google Scholar 

  5. 5

    Yang, X., Zhang, S.M., Zhang, J.X., Xu, M.Y., Ren, P., Li, X.C., and Yan, L.C., The study on synthesis and modification for iron phosphate, Funct. Mater. Lett., 2011, vol. 4, no. 4, pp. 323–326.

    CAS  Article  Google Scholar 

  6. 6

    Novikova, S., Yaroslavtsev, S., Rusakov, V., Kulova, T., Skundin, A., and Yaroslavtsev, A., LiFe1 –x \({\text{M}}_{x}^{{{\text{II}}}}\)PO4/C (MII = Co, Ni, Mg) as cathode materials for lithium-ion batteries, Electrochim. Acta, 2014, vol. 122, pp. 180–186.

    CAS  Article  Google Scholar 

  7. 7

    Kapaev, R.R., Novikova, S.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., Synthesis of LiFePO4 nanoplates as cathode materials for Li-ion batteries, Nanotechnol. Russ., 2016, vol. 11, nos. 11–12, pp. 757–760.

    CAS  Article  Google Scholar 

  8. 8

    Gryzlov, D., Novikova, S., Kulova, T., Skundin, A., and Yaroslavtsev, A., Behavior of LiFePO4/CPVDF/Ag-based cathode materials obtained using polyvinylidene fluoride as the carbon source, Mater. Des., 2016, vol. 104, no. 15, pp. 95–101.

    CAS  Article  Google Scholar 

  9. 9

    Shatilo, Ya.V., Makhonina, E.V., Pervov, V.S., Dubasova, V.S., Nikolenko, A.F., Dobrokhotova, Zh.V., and Kedrinskii, I.A., LiCoO2- and LiMn2O4-based composite cathode materials, Inorg. Mater., 2006, vol. 42, no. 7, pp. 782–787.

    CAS  Article  Google Scholar 

  10. 10

    Eftekhari, A., LiFePO4/C nanocomposites for lithium-ion batteries, J. Power Sources, 2017, vol. 343, pp. 395–411.

    CAS  Article  Google Scholar 

  11. 11

    Li, L., Wu, L., Wu, F., Song, S., Zhang, X., Fu, C., Yuan, D., and Xianga, Y., Review—recent research progress in surface modification of LiFePO4 cathode materials, J. Electrochem. Soc., 2017, vol. 164, no. 9, pp. A2138–A2150.

    CAS  Article  Google Scholar 

  12. 12

    Stenina, I.A. and Yaroslavtsev, A.B., Low- and intermediate-temperature proton-conducting electrolytes, Inorg. Mater., 2017, vol. 53, no. 3, pp. 253–262.

    CAS  Article  Google Scholar 

  13. 13

    Su, X., Wu, Q., Li, J., Xiao, X., Lott, A., Lu, W., Sheldon, B.W., and Wu, J., Silicon-based nanomaterials for lithium-ion batteries: a review, Adv. Energy Mater., 2014, vol. 4, no. 1, pp. 1–21.

    CAS  Article  Google Scholar 

  14. 14

    Medvedeva, A.E., Pechen, L.S., Makhonina, E.V., Rumyantsev, A.M., Koshtyal, Yu.M., Pervov, V.S., and Eremenko, I.L., Synthesis and electrochemical properties of lithium-ion battery cathode materials based on LiFePO4–LiMn2O4 and LiFePO4–LiNi0.82Co0.18O2 composites, Russ. J. Inorg. Chem., 2019, vol. 64, no. 7, pp. 829–840.

    CAS  Article  Google Scholar 

  15. 15

    Voronov, V.A. and Gubin, S.P., Preparation, structure, and properties of carbon-coated Li1.2Ni0.2Mn0.4Co0.2O2 nanoparticles, Inorg. Mater., 2014, vol. 50, no. 4, pp. 409–414.

    CAS  Article  Google Scholar 

  16. 16

    Zhao, D., Feng, Y., Wang, Y., and Xia, Y., Electrochemical performance comparison of LiFePO4 supported by various carbon materials, Electrochim. Acta, 2013, vol. 88, pp. 632–638.

    CAS  Article  Google Scholar 

  17. 17

    Shin, H.C., Cho, W.I., and Jang, H., Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black, Electrochim. Acta, 2006, vol. 52, pp. 1472–1476.

    CAS  Article  Google Scholar 

  18. 18

    Guan, Y., Shen, J., Wei, X., Zhu, Q., Zheng, X., Zhou, S., and Xu, B., High-rate performance of a three-dimensional LiFePO4/graphene composite as cathode material for Li-ion batteries, Appl. Surf. Sci., 2019, vol. 481, pp. 1459–1465.

    CAS  Article  Google Scholar 

  19. 19

    Wang, J., Cai, K., and Shen, S., A facile chemical reduction approach for effectively tuning thermoelectric properties of PEDOT films, Org. Electron., 2015, vol. 17, pp. 151–158.

    CAS  Article  Google Scholar 

  20. 20

    Meng, Q., Cai, K., Chen, Y., and Chen, L., Research progress on conducting polymer based supercapacitor electrode materials, Nano Energy, 2017, vol. 36, pp. 268–285.

    CAS  Article  Google Scholar 

  21. 21

    Schwartz, P.-O., Pejic, M., Wachtler, M., and Bäuerle, P., Synthesis and characterization of electroactive PEDOT–tempo polymers as potential cathode materials in rechargeable batteries, Synth. Met., 2018, vol. 243, pp. 51–57.

    CAS  Article  Google Scholar 

  22. 22

    Pathiranage, T.M.S.K., Dissanayake, D.S., Niermann, C.N., Ren, Y., Biewer, M.C., and Stefan, M.C., Role of polythiophenes as electroactive materials, Polym. Chem., 2017, vol. 55, no. 20, pp. 3327–3346.

    CAS  Article  Google Scholar 

  23. 23

    Wang, J., Ji, L., Teng, X., Liu, Y., Guoa, L., and Chen, Z., Decoupling half-reactions of electrolytic water splitting by integrating a polyaniline electrode, J. Mater. Chem. A, 2019, vol. 7, no. 21, pp. 13 149–13 153.

  24. 24

    Dubal, D., Jagadale, A., Chodankar, N.R., Kim, D.H., Gomez-Romero, P., and Holze, R., Polypyrrole nanopipes as a promising cathode material for Li-ion batteries and Li-ion capacitors: two-in-one approach, Energy Technol., 2018, vol. 7, no. 2, pp. 193–200.

    CAS  Article  Google Scholar 

  25. 25

    Feng, S., Shen, W., and Guo, S., Effects of polypyrrole and chemically reduced graphene oxide on electrochemical properties of lithium iron(II) phosphate, J. Solid State Electrochem., 2017, vol. 21, no. 10, pp. 3021–3028.

    CAS  Article  Google Scholar 

  26. 26

    Puthirath, A.B., John, B., Gouri, C., and Jayalekshmi, S., Lithium doped polyaniline and its composites with LiFePO4 and LiMn2O4—prospective cathode active materials for environment friendly and flexible Li-ion battery applications, RSC Adv., 2015, vol. 5, pp. 69 220–69 228.

  27. 27

    Bai, Y.M., Qiu, P., Wen, Z.-L., and Han, S.-C., Improvement of electrochemical performances of LiFePO4 cathode materials by coating of polythiophene, J. Alloys Compd., 2010, vol. 508, no. 1, pp. 1–4.

    CAS  Article  Google Scholar 

  28. 28

    Levin, O.V., Eliseeva, S.N., Alekseeva, E.V., Tolstopjatova, E.G., and Kondratiev, V.V., Composite LiFePO4/poly-3,4-ethylenedioxythiophene cathode for lithium-ion batteries with low content of non-electroactive components, Int. J. Electrochem. Sci., 2015, vol. 10, no. 10, pp. 8175–8189.

    CAS  Google Scholar 

  29. 29

    Murugan, A.V., Muraliganth, T., and Manthiram, A., Rapid microwave–solvothermal synthesis of phospho-olivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries, Electrochem. Commun., 2008, vol. 10, no. 6, pp. 903–906.

    CAS  Article  Google Scholar 

  30. 30

    Shi, J.Y., Yi, C.-W., and Kim, K., An investigation of LiFePO4/poly(3,4-ethylenedioxythiophene) composite cathode materials for lithium-ion batteries, Bull. Korean Chem. Soc., 2010, vol. 31, no. 9, pp. 2698–2700.

    CAS  Article  Google Scholar 

  31. 31

    Cíntora-Juárez, D., Pérez-Vicente, C., Ahmad, S., and Tirado, J.L., Improving the cycling performance of LiFePO4 cathode material by poly(3,4-ethylenedioxythiopene) coating, RSC Adv., 2014, vol. 4, no. 50, pp. 26 108–26 114.

  32. 32

    Yaroslavtsev, A.B., Stenina, I.A., Voropaeva, E.Yu., and Ilyina, A.A., Ion transfer in composite membranes based on MF-4SC incorporated nanoparticles of silica, zirconia and polyaniline, Polym. Adv. Technol., 2009, vol. 20, no. 6, pp. 566–570.

    CAS  Article  Google Scholar 

  33. 33

    Vicente, N., Haro, M., Cíntora-Juárez, D., Pérez-Vicente, C., Tirado, J.L., Ahmad, S., and Garcia-Belmonte, G., LiFePO4 particle conductive composite strategies for improving cathode rate capability, Electrochim. Acta, 2015, vol. 163, pp. 323–329.

    CAS  Article  Google Scholar 

  34. 34

    Li, Y., Wang, B., Chen, H., and Feng, W., Improvement of the electrochemical properties via poly(3,4-ethylenedioxythiophene) oriented micro/nanorods, J. Power Sources, 2010, vol. 195, no. 9, pp. 3025–3030.

    CAS  Article  Google Scholar 

  35. 35

    Tevi, T., Saint Birch, S.W., Thomas, S.W., and Takshi, A., Effect of Triton X-100 on the double layer capacitance and conductivity of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films, Synth. Met., 2014, vol. 191, pp. 59–65.

    CAS  Article  Google Scholar 

  36. 36

    Kim, J., Yoo, J.K., Jung, Y.S., and Kang, K., Li3V2(PO4)3/conducting polymer as a high-power 4 V-class lithium battery electrode, Adv. Energy Mater., 2013, vol. 3, no. 8, pp. 1004–1007.

    CAS  Article  Google Scholar 

  37. 37

    Seo, K.I. and Chung, I.J., Reaction analysis of 3,4-ethylenedioxythiophene with potassium persulfate in aqueous solution by using a calorimeter, Polymer, 2000, vol. 41, no. 12, pp. 4491–4499.

    CAS  Article  Google Scholar 

  38. 38

    Kvarnström, C., Neugebauer, H., Blomquist, S., Ahonen, H.J., Kankare, J., and Ivaska, A., In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene), Electrochim. Acta, 1999, vol. 44, no. 16, pp. 2739–2750.

    Article  Google Scholar 

  39. 39

    Hernandez, V., Ramirez, F.J., Otero, T.F., and Lopez Navarrete, J.T., An interpretation of the vibrational spectra of insulating and electrically conducting poly(3-methylthiophene) aided by a theoretical dynamical model, J. Chem. Phys., 1994, vol. 100, no. 1, pp. 114–129.

    CAS  Article  Google Scholar 

  40. 40

    Brooke, R., Cottis, P., Talemi, P., Fabretto, M., Murphy, P., and Evans, D., Recent advances in the synthesis of conducting polymers from the vapour phase, Prog. Mater. Sci., 2017, vol. 86, pp. 127–146.

    CAS  Article  Google Scholar 

  41. 41

    Yoon, S.-S. and Khang, D.-Y., Roles of nonionic surfactant additives in PEDOT:PSS thin films, J. Phys. Chem. C, 2016, vol. 120, pp. 29 525–29 532.

  42. 42

    Safronov, D.V., Novikova, S.A., Skundin, A.M., and Yaroslavtsev, A.B., Lithium intercalation and deintercalation processes in Li4Ti5O12 and LiFePO4, Inorg. Mater., 2012, vol. 48, no. 1, pp. 57–61.

    CAS  Article  Google Scholar 

Download references


The SEM and CHNS measurements were performed using shared experimental facilities supported by IGIC RAS state assignment.


This work was supported by the Russian Academy of Sciences, basic research program no. 1.15.2: Fundamental Principles of Designing Advanced Metallic, Ceramic, and Composite Structural Materials with an Improved Combination of Performance Characteristics, project no.

Author information



Corresponding author

Correspondence to I. A. Stenina.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ozerova, V.V., Stenina, I.A., Kuz’mina, A.A. et al. Cathode Materials Based on Lithium Iron Phosphate/PEDOT Composites for Lithium-Ion Batteries. Inorg Mater 56, 648–656 (2020).

Download citation


  • LiFePO4
  • poly(3,4-ethylenedioxythiophene)
  • carbon coating
  • cetyltrimethylammonium bromide
  • Triton X-100
  • composite
  • cathode material