Skip to main content
Log in

Preparation of NZP-Type Ca0.75 + 0.5xZr1.5Fe0.5(PO4)3 –x(SiO4)x Powders and Ceramic, Thermal Expansion Behavior

  • Published:
Inorganic Materials Aims and scope

Abstract

Ca0.75 + 0.5xZr1.5Fe0.5(PO4)3 –x(SiO4)x (x = 0–0.5) solid solutions have been synthesized by a sol–gel process and characterized by X-ray diffraction, IR spectroscopy, and differential scanning calorimetry. As expected, the synthesized phosphatosilicates crystallize in a NaZr2(PO4)3-type structure (trigonal symmetry, sp. gr. R\(\bar {3}\)c). The thermal expansion of the solid solutions has been studied by high-temperature X-ray diffraction in the temperature range from 25 to 800°C. Their thermal expansion parameters have been calculated and analyzed as functions of composition. High-density ceramics based on the Ca0.875Zr1.5Fe0.5(PO4)2.75(SiO4)0.25 phosphatosilicate have been produced by spark plasma sintering and their structure and properties have been studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Orlova, A.I., Volkov, Yu.F., Melkaya, R.F., et al., Synthesis and radiation resistance of NZP-type phosphates containing f-elements, Radiokhimiya, 1994, vol. 36, no. 4, pp. 295–298.

    CAS  Google Scholar 

  2. Orlova, A.I., Volgutov, V.Yu., Mikhailov, D.A., et al., Phosphate Ca1/4Sr1/4Zr2(PO4)3 of the NaZr2(PO4)3 structure type: synthesis of a dense ceramic material and its radiation testing, J. Nucl. Mater., 2014, vol. 446, pp. 232–239.

    Article  CAS  Google Scholar 

  3. Goodenough, J.B., Hong, H.Y.-P., and Kafalas, J.A., Fast Na+-ion transport in skeleton structures, Mater. Res. Bull., 1976, vol. 11, pp. 203–220.

    Article  CAS  Google Scholar 

  4. Bykov, D.M., Shekhtman, G.Sh., Orlova, A.I., et al., Multivalent ionic conductivity in the series of phosphates LaxYb1/3 − xZr2(PO4)3 with NASICON structure, Solid State Ionics, 2011, vol. 182, pp. 47–52.

    Article  CAS  Google Scholar 

  5. Kumar, S. and Balaya, P., Improved ionic conductivity in NASICON-type Sr2+ doped LiZr2(PO4)3, Solid State Ionics, 2016, vol. 296, pp. 1–6.

    Article  CAS  Google Scholar 

  6. Agaskar, P.A., Grasselli, R.K., Buttrey, D.J., and White, B., Structural and catalytic aspects of some NASICON-based mixed metal phosphates, Stud. Surf. Sci. Catal., 1997, vol. 110, pp. 219–226.

    Article  CAS  Google Scholar 

  7. Orlova, A.I., Kanunov, A.E., Gorshkova, E.N., et al., Synthesis, luminescence, and biocompatibility of calcium- and lanthanide-containing NaZr2(PO4)3-type compounds, Inorg. Mater., 2013, vol. 49, no. 1, pp. 89–94.

    Article  CAS  Google Scholar 

  8. Kanunov, A.E., Glorieux, B., Orlova, A.I., et al., Synthesis, structure and luminescence properties of phosphates A1 – 3xEuxZr2(PO4)3 (A—alkali metal), Bull. Mater. Sci., 2017, vol. 40, pp. 7–16.

    Article  CAS  Google Scholar 

  9. Lenain, G.E., McKinstry, H.A., Limaye, S.Y., and Woodward, A., Low thermal expansion of alkali–zirconium phosphates, Mater. Res. Bull., 1984, vol. 19, no. 11, pp. 1451–1456.

    Article  CAS  Google Scholar 

  10. Limaye, S.Y., Agrawal, D.K., and McKinstry, H.A., Synthesis and thermal expansion of MZr4P6O24(M = Mg, Ca, Sr, Ba), J. Am. Ceram. Soc., 1987, vol. 70, no. 10, pp. 232–236.

    Article  Google Scholar 

  11. Volgutov, V.Yu. and Orlova, A.I., Thermal expansion of phosphates with the NaZr2(PO4)3 structure containing lanthanides and zirconium: R 0.33Zr2(PO4)3 (R = Nd, Eu, Er) and Er0.33(1 – x)Zr0.25xZr2(PO4)3, Crystallogr. Rep., 2015, vol. 60, no. 5, pp. 721–728.

    Article  CAS  Google Scholar 

  12. Oikonomou, P., Dedeloudis, Ch., Stournaras, C.J., and Ftikos, Ch., [NZP]: a new family of ceramics with low thermal expansion and tunable properties, J. Eur. Ceram. Soc., 2007, vol. 27, pp. 1253–1258.

    Article  CAS  Google Scholar 

  13. Sukhanov, M.V., Pet’kov, V.I., and Firsov, D.V., Sintering mechanism for high-density NZP ceramics, Inorg. Mater., 2011, vol. 47, no. 6, pp. 674–678.

    Article  CAS  Google Scholar 

  14. Orlova, A.I., Koryttseva, A.K., Kanunov, A.E., et al., Fabrication of NZP-type ceramic materials by spark plasma sintering, Inorg. Mater., 2012, vol. 48, no. 3, pp. 313–317.

    Article  CAS  Google Scholar 

  15. Hagman, L. and Kierkegaard, P., The crystal structure of Na\({\text{M}}_{2}^{{{\text{IV}}}}\)(PO4)3; MeIV = Ge, Ti, Zr, Acta Chem. Scand., 1968, vol. 22, pp. 1822–1832.

    Article  CAS  Google Scholar 

  16. Orlova, A.I., Isomorphism of crystalline NaZr2(PO4)3-type phosphates and radiochemical problems, Radiokhimiya, 2002, vol. 44, no. 5, pp. 385–403.

    Google Scholar 

  17. Volkov, Yu.F. and Orlova, A.I., Sistematika i kristallokhimicheskii aspekt neorganicheskikh soedinenii s odnoyadernymi tetraedricheskimi oksoanionami (Systematics and Crystal-Chemical Aspect of Inorganic Compounds with Mononuclear Tetrahedral Oxyanions), Dimitrovgrad: FGUP “GNTs RF NIIAR”, 2004.

  18. Roy, R., Agrawal, D.K., Alamo, J., and Roy, R.A., [CTP]: a new structural family of near-zero expansion ceramics, Mater. Res. Bull., 1984, vol. 19, no. 4, pp. 471–477.

    Article  CAS  Google Scholar 

  19. Alamo, J. and Roy, R., Ultralow-expansion ceramics in the system Na2O–ZrO2–P2O5–SiO2, J. Am. Ceram. Soc., 1984, vol. 67, no. 5, pp. 78–80.

    Article  Google Scholar 

  20. Ribero, D., Seymour, K.C., Kriven, W.M., and White, M.A., Synthesis of NaTi2(PO4)3 by the inorganic–organic steric entrapment method and its thermal expansion behavior, J. Am. Ceram. Soc., 2016, vol. 99, no. 11, pp. 3586–3593.

    Article  CAS  Google Scholar 

  21. Roy, R., Agrawal, D.K., and McKinstry, H.A., Very low thermal expansion coefficient materials, Annu. Rev. Mater. Sci., 1989, vol. 19, pp. 59–81.

    Article  CAS  Google Scholar 

  22. Lenain, G.E., McKinstry, H.A., Alamo, J., and Agrawal, D.K., Structural model for thermal expansion in MZr2P3O12 (M = Li, Na, K, Rb, Cs), J. Mater. Sci., 1987, vol. 22, pp. 17–22.

    Article  CAS  Google Scholar 

  23. Pet’kov, V.I. and Orlova, A.I., Crystal-chemical approach to predicting the thermal expansion of compounds in the NZP family, Inorg. Mater., 2003, vol. 39, no. 10, pp. 1013–1023.

    Article  Google Scholar 

  24. Roy, S. and Padma Kumar, P., Framework flexibility of sodium zirconium phosphate: role of disorder, and polyhedral distortions from Monte Carlo investigation, J. Mater. Sci., 2012, vol. 47, pp. 4949–4954.

    Google Scholar 

  25. Tokita, M., Development of advanced spark plasma sintering (SPS) systems and its industrial applications, Ceram. Trans., 2006, vol. 194, pp. 51–59.

    CAS  Google Scholar 

  26. Chuvil’deev, V.N., Boldin, M.S., Nokhrin, A.V., and Popov, A.A., Advanced materials obtained by spark plasma sintering, Acta Astr., 2017, vol. 135, pp. 192–197.

    Article  CAS  Google Scholar 

  27. Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M., The effect of electric field and pressure on the synthesis and consolidation materials: a review of the spark plasma sintering method, J. Mater. Sci., 2006, vol. 41, pp. 763–777.

    Article  CAS  Google Scholar 

  28. Potanina, E.A., Orlova, A.I., Nokhrin, A.V., et al., Characterization of Nax(Ca/Sr)1 – 2xNdxWO4 complex tungstates fine-grained ceramics obtained by spark plasma sintering, Ceram. Int., 2018, vol. 44, pp. 4033–4044.

    Article  CAS  Google Scholar 

  29. Savinykh, D.O., Khainakov, S.A., Orlova, A.I., and Garcia-Granda, S., Preparation and thermal expansion of calcium iron zirconium phosphates with the NaZr2(PO4)3 structure, Inorg. Mater., 2018, vol. 54, no. 6, pp. 591–595.

    Article  CAS  Google Scholar 

  30. Orlova, A.I., Troshin, A.N., Mikhailov, D.A., et al., Phosphorus-containing cesium compounds with the pollucite structure: fabrication and radiation testing of high-density ceramics, Radiokhimiya, 2014, vol. 56, no. 1, pp. 87–92.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 16-13-10464: Advanced ceramic like mineral materials with improved and adjustable service characteristics: design, synthesis, study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Savinykh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savinykh, D.O., Khainakov, S.A., Boldin, M.S. et al. Preparation of NZP-Type Ca0.75 + 0.5xZr1.5Fe0.5(PO4)3 –x(SiO4)x Powders and Ceramic, Thermal Expansion Behavior. Inorg Mater 54, 1267–1273 (2018). https://doi.org/10.1134/S0020168518120154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518120154

Keywords:

Navigation