Skip to main content
Log in

Synthesis and Physicochemical and Electrorheological Properties of Modified Nanodisperse Titanium Dioxide

  • Published:
Inorganic Materials Aims and scope

Abstract

Nanodisperse modified titanium dioxide ranging in specific surface from 70 to 130 m2/g has been prepared by a sol–gel process using Al(NO3)3 and H3PO4 as modifying components and dodecylamine and ammonium carbonate as structuring components. Microwave drying of an intermediate product and pulverization in a planetary mill have been shown for the first time to be effective in reducing the bulk density of the material and improving its electrorheological activity. The effect of filler concentration (10–40 wt %) on the shear load and leakage current density of electrorheological dispersions has been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Zhao, X.P., Yin, J.B., Xiang, L.Q., and Zhao, Q., Electrorheological fluids containing Ce-doped titania, J. Mater. Sci., 2002, vol. 37, pp. 2569–2573.

    Article  CAS  Google Scholar 

  2. Tang, H., He, J., and Persello, J., Giant electrorheological effects of aluminium-doped TiO2 nanoparticles, Particuology, 2010, vol. 8, pp. 442–446.

    Article  CAS  Google Scholar 

  3. Shang, Y.L., Jia, Y.L., Liao, F.H., Li, J.R., Li, M.H., Wang, J., and Zhang, S.H., Preparation, microstructure and electrorheological property of nano-sized TiO2 particle materials doped with metal oxides, J. Mater. Sci., 2007, vol. 42, pp. 2586–2590.

    Article  CAS  Google Scholar 

  4. Wu, Q., Zhao, B.Y., Fang, C., and Hu, K.A., An enhanced polarization mechanism for the metal cations modified amorphous TiO2 based electrorheological materials, Eur. Phys. J. E, 2005, vol. 17, pp. 63–67.

    Article  CAS  PubMed  Google Scholar 

  5. Yin, J.B. and Zhao, X.P., Enhanced electrorheological activity of mesoporous Cr-doped TiO2 from activated pore wall and high surface area, J. Phys. Chem. B, 2006, vol. 110, pp. 12 916–12 925.

  6. Yin, J. and Zhao, X., Temperature effect of rare earth-doped TiO2 electrorheological fluids, J. Phys. D: Appl. Phys., 2001, no. 34, pp. 2063–2067.

  7. Zhao, X.P. and Yin, J.B., Preparation and electrorheological characteristics of rare-earth-doped TiO2 suspensions, Chem. Mater., 2002, no. 14, pp. 2258–2263.

  8. Ma, Sh., Liao, F., Li, Sh., Xu, M., Li, J., Zhang, Sh., Chen, Sh., Huang, R., and Gao, S., Effect of microstructure, grain size, and rare earth doping on the electrorheological performance of nanosized particle materials, J. Mater. Chem., 2003, vol. 13, pp. 3096–3102.

    Article  CAS  Google Scholar 

  9. Yin, J. and Zhao, X., Electrorheology of nanofiber suspensions, Nanoscale Res. Lett., 2011, no. 6, pp. 256–273.

  10. Murashkevich, A.N., Alisienok, O.A., Zharskii, I.M., and Korobko, E.V., Modified titania and titanium-containing composites as fillers exhibiting an electrorheological effect, Inorg. Mater., 2013, vol. 49, no. 2, pp. 165–171.

    Article  CAS  Google Scholar 

  11. Murashkevich, A.N., Alisienok, O.A., Zharskii, I.M., Korobko, E.V., Zhuravskii, N.A., and Novikova, Z.A., Physicochemical and electrorheological properties of titanium dioxide modified with metal oxides, Colloid J., 2014, vol. 76, no. 4, pp. 465–470.

    Article  CAS  Google Scholar 

  12. Wang, B. and Zhao, X., Core/shell nanocomposite based on the local polarization and its electrorheological behavior, Langmuir, 2005, vol. 21, pp. 6553–6559.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, M.W., Moon, I.J., Choi, H.J., and Seo, Y., Facile fabrication of core/shell structured SiO2/polypyrrole nanoparticles with surface modification and their electrorheology, RSC Adv., 2016, vol. 6, no. 61, pp. 56 495–56 502.

  14. Kim, S., Kim, Ch., Hong, J.-Y., Hwang, S.H., and Jang, J., Enhanced electrorheological performance of barium-doped SiO2/TiO2 hollow mesoporous nanospheres, RSC Adv., 2014, vol. 4, pp. 6821–6824.

    Article  CAS  Google Scholar 

  15. Jiang, Y., Li, X., Wang, Sh., and Xiao, Y., Preparation of titanium dioxide nano-particles modified with poly(methyl methacrylate) and its electrorheological characteristics in Isopolar L, Colloid Polym. Sci., 2015, vol. 293, no. 2, pp. 473–479.

    Article  CAS  Google Scholar 

  16. Xiang, L., Zhao, X., and Yin, J., Micro/nano-structured montmorillonite/titania particles with high electrorheological activity, Rheol. Acta, 2011, vol. 50, pp. 87–95.

    Article  CAS  Google Scholar 

  17. Liu, F., Xu, G., Wu, J., Cheng, Y., Guo, J., and Cui, P., Synthesis and electrorheological properties of oxalate group-modified amorphous titanium oxide nanoparticles, Colloid Polym. Sci., 2010, vol. 288, pp. 1739–1744.

    Article  CAS  Google Scholar 

  18. Li, Zh., Liu, F., Xu, G., Zhang, J., and Chu, Ch., A kinetics-controlled coating method to construct 1D attapulgite amorphous titanium oxide nanocomposite with high electrorheological activity, Colloid Polym. Sci., 2014, vol. 292, pp. 3327–3335.

    Article  CAS  Google Scholar 

  19. Wang, J., Chen, G., Yin, J., Luo, Ch., and Zhao, X., Enhanced electrorheological performance and antisedimentation property of mesoporous anatase TiO2 shell prepared by hydrothermal process, Smart Mater. Struct., 2017, vol. 26, no. 3, pp. 1–8.

    Google Scholar 

  20. Wang, Zh., Song, X., Wang, B., Tian, X., Hao, Ch., and Chen, K., Bionic cactus-like titanium oxide microspheres and its smart electrorheological activity, Chem. Eng. J., 2014, vol. 256, pp. 268–279.

    Article  CAS  Google Scholar 

  21. Zhao, B., Lin, L., and He, D., Phase and morphological transitions of titania/titanate nanostructures from an acid to an alkali hydrothermal environment, J. Mater. Chem. A, 2013, vol. 1, pp. 1659–1668.

    Article  CAS  Google Scholar 

  22. Gerasimova, T.V., Evdokimova (Galkina), O.L., Kraev, A.S., Ivanov, V.K., and Agafonov, A.V., Micro-mesoporous anatase TiO2 nanorods with high specific surface area possessing enhanced adsorption ability and photocatalytic activity, Microporous Mesoporous Mater., 2016, vol. 235, pp. 185–194.

    Article  CAS  Google Scholar 

  23. Zhang, M., Jin, Zh., Zhang, J., Guo, X., Yang, J., and Li, W., Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2, J. Mol. Catal. A: Chem., 2004, vol. 217, pp. 203–210.

    Article  Google Scholar 

  24. Qi, Y.B. and Wen, W.J., Influences of geometry of particles on electrorheological fluids, J. Phys. D: Appl. Phys., 2002, vol. 35, pp. 2231–2245.

    Article  CAS  Google Scholar 

  25. Tan, S., Song, X., Zhao, H., Ji, S., Min, W., Guo, H., and Chunjiang, Zh., Rheology properties of Ni/TiO2/SDBS EMR fluids, Adv. Mater. Res., 2013, vols. 706–708, pp. 254–257.

    Article  CAS  Google Scholar 

  26. Sedlacik, M., Mrlik, M., Kozakova, Z., Pavlinek, V., and Kuritka, I., Synthesis and electrorheology of rod-like titanium oxide particles prepared via microwave-assisted molten-salt method, Colloid Polym. Sci., 2013, vol. 291, pp. 1105–1111.

    Article  CAS  Google Scholar 

  27. Yin, J., Zhao, X., Xiang, L., Xia, X., and Zhang, Z.H., Enhanced electrorheology of suspensions containing sea-urchin-like hierarchical Cr-doped titania particles, Soft Matter, 2009, vol. 5, pp. 4687–4697.

    Article  CAS  Google Scholar 

  28. Otsubo, Y., Electrorheology of whisker suspensions, Colloids Surf., A, 1999, no. 153, pp. 459–465.

  29. Agafonov, A.V., Davydova, O.I., Krayev, A.S., Ivanova, O.S., Evdokimova, O.L., Gerasimova, T.V., Baranchikov, A.E., Kozik, V.V., and Ivanov, V.K., Unexpected effects of activator molecules' polarity on the electrorheological activity of titanium dioxide nanopowders, J. Phys. Chem. B, 2017, vol. 121, pp. 6732–6738.

    Article  CAS  PubMed  Google Scholar 

  30. Agafonov, A.V., Krayev, A.S., Davydova, O.I., Ivanov, K.V., Shekunova, T.O., Baranchikov, A.E., Ivanova, O.S., Borilo, L.P., Garshev, A.V., Kozik, V.V., and Ivanov, V.K., Nanocrystalline ceria: a novel material for electrorheological fluids, RSC Adv., 2016, vol. 6, pp. 88 851–88 858.

  31. Agafonov, A.V., Kraev, A.S., Gerasimova, T.V., et al., Properties of electrorheological fluids based on nanocrystalline cerium dioxide, Russ. J. Inorg. Chem., 2017, vol. 62, no. 5, pp. 625–632.

    Article  CAS  Google Scholar 

  32. Murashkevich, A.N., Zharskii, I.M., Alisienok, O.A., Babeiko, K.M., Korobko, E.V., and Bedik, N.A., Structural and electrophysical properties of nanodispersed titanium dioxide as a filler of electrorheological dispersions, Materialy V mezhdunarodnoi nauchnoi konferentsii “Nanostrukturnye materialy” (Proc. V Int. Sci. Conf. Nanostructured Materials), Minsk, 2016, vol. 1, pp. 114–117.

  33. GOST (State Standard) 18307-78: Carbon White, Purity Standard, 1978.

  34. Wang, J., Zhao, K., and Zhang, L., Dielectric analysis of TiO2-based electrorheological suspensions, Rheol. Acta., 2013, vol. 52, pp. 115–125.

    Article  CAS  Google Scholar 

  35. Murashkevich, A.N., Alisienok, O.A., Zharskii, I.M., Korobko, E.V., and Novikova, Z.A., The effect of the synthesis conditions of aluminum-modified nanosized titanium dioxide on the efficiency of its use in electrorheological dispersions, Colloid J., 2017, vol. 79, no. 1, pp. 87–93.

    Article  CAS  Google Scholar 

  36. Tarasov, A.B., Synthesis, structure, and functional properties of nanostructured titanium dioxide obtained by heterogeneous hydrolysis of titanium tetrachloride in aerosol systems, Cand. Sci. (Eng.) Dissertation, Chernogolovka, 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Murashkevich.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murashkevich, A.N., Chechura, K.M., Novitskaya, M.S. et al. Synthesis and Physicochemical and Electrorheological Properties of Modified Nanodisperse Titanium Dioxide. Inorg Mater 54, 1223–1230 (2018). https://doi.org/10.1134/S0020168518120129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518120129

Keywords:

Navigation