Skip to main content
Log in

Preparation of Fine-Grained Y2.5Nd0.5Al5O12 + MgO composite ceramics for Inert Matrix Fuels by Spark Plasma Sintering

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the feasibility of preparing high-density (98.6–99.5%) Y2.5Nd0.5Al5O12 (YAG)–xMgO (x = 5, 10, 20 vol %) composite ceramics by spark plasma sintering. YAG–MgO powder materials have been prepared via MgO precipitation from an aqueous solution of magnesium nitrate, Mg(NO3)2, on the surface of garnet particles. The sintering rate of the YAG–MgO composites has been shown to be controlled by volume diffusion at low temperatures and by grain-boundary diffusion at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Cocuaud, N. et al., Inert matrices, uranium-free plutonium fuels and americium targets. Synthesis of CAPRA, SPIN and EFTTRA studies, Proc. Conf. GLOBAL'97, Yokohama, 1997, pp. 1044–1049.

  2. Chauvin, N., Konings, R.J., and Matzke, H., Optimization of inert matrix fuel concepts for americium transmutation, J. Nucl. Mater., 1999, vol. 274, nos. 1–2, pp. 105–111.

    Article  CAS  Google Scholar 

  3. Neeft, E.A.C., Bakker, K., Schram, R.P.C., et al., The EFTTRA-T3 irradiation experiment on inert matrix fuels, J. Nucl. Mater., 2003, vol. 320, nos. 1–2, pp. 106–116.

    Article  CAS  Google Scholar 

  4. Golovkina, L.S., Orlova, A.I., Boldin, M.S., et al., Development of composite ceramic materials with improved thermal conductivity and plasticity based on garnet-type oxide, J. Nucl. Mater., 2017, vol. 489, pp. 158–163.

    Article  CAS  Google Scholar 

  5. Potanina, E., Golovkina, L., Orlova, A., et al., Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by “wet” chemistry to sintering ceramics by spark plasma sintering, J. Nucl. Mater., 2016, vol. 473, pp. 93–98.

    Article  CAS  Google Scholar 

  6. Golovkina, L.S., Orlova, A.I., Nokhrin, A.V., et al., Ceramics based on yttrium aluminum garnet containing Nd and Sm obtained by spark plasma sintering, Adv. Ceram. Sci. Eng., 2013, vol. 2, no. 4, pp. 161–165.

    Google Scholar 

  7. Tomilin, S.V., Lizin, A.A., Lukinykh, A.N., et al., Radiation resistance and chemical stability of yttrium aluminum garnet, Radiokhimiya, 2011, vol. 53, no. 2, pp. 162–165.

    Google Scholar 

  8. Livshits, T.S., Lizin, A.A., Zhang, J.M., and Ewing, R.C., Amorphization of rare earth aluminate garnets under ion irradiation and decay of 244Cm admixture, Geol. Ore Deposits, 2010, vol. 52, no. 4, pp. 267–278.

    Article  Google Scholar 

  9. Gregg, D.J., Karatchevtseva, I., Triani, G., et al., The thermophysical properties of calcium and barium zirconium phosphate, J. Nucl. Mater., 2013, vol. 441, pp. 203–210.

    Article  CAS  Google Scholar 

  10. Ryu, H.J., Lee, Y.W., Cha, S.I., et al., Sintering behaviour and microstructures of carbides and nitrides for the inert matrix fuel by spark plasma sintering, J. Nucl. Mater., 2006, vol. 352, pp. 341–348.

    Article  CAS  Google Scholar 

  11. Kamel, N., Aϊt-Amar, H., Kamel, Z., et al., On the basic properties of an iron-based simulated cermet inert matrix fuel, synthesized by a dry route in oxidizing conditions, Prog. Nucl. Eng., 2006, vol. 48, pp. 590–598.

    Article  CAS  Google Scholar 

  12. Wang, B., Jiang, H., Jia, X., et al., Thermal conductivity of doped YAG and GGG laser crystal, Front. Optoelectron. China, 2008, vol. 1, nos. 1–2, pp. 138–141.

    Article  Google Scholar 

  13. Chuvil’deev, V.N., Boldin, M.S., Dyatlova, Ya.G., et al., A comparative study of the hot pressing and spark plasma sintering of Al2O3–ZrO2–Ti(C,N) powders, Inorg. Mater., 2015, vol. 51, no. 10, pp. 1047–1053.

    Article  CAS  Google Scholar 

  14. Chuvil’deev, V.N., Boldin, M.S., Nokhrin, A.V., and Popov, A.A., Advanced materials obtained by spark plasma sintering, Acta Astronaut., 2017, vol. 135, pp. 192–197.

    Article  CAS  Google Scholar 

  15. Tokita, M., Spark plasma sintering (SPS) method, systems, and applications, Handbook of Advanced Ceramics, New York: Academic, 2013, pp. 1149–1177.

    Google Scholar 

  16. Chuvildeev, V.N., Panov, D.V., Boldin, M.S., et al., Structure and properties of advanced materials obtained by spark plasma sintering, Acta Astronaut., 2015, vol. 109, pp. 172–176.

    Article  CAS  Google Scholar 

  17. Orlova, A.I., Koryttseva, A.K., Kanunov, A.E., et al., Fabrication of NZP-type ceramic materials by spark plasma sintering, Inorg. Mater., 2012, vol. 48, no. 3, pp. 313–317.

    Article  CAS  Google Scholar 

  18. Golovkina, L.S., Orlova, A.I., Chuvil’deev, V.N., et al., Spark plasma sintering of high-density fine-grained Y2.5Nd0.5Al5O12 + SiC composite ceramics, Mater. Res. Bull., 2018, vol. 103, pp. 211–215.

    Article  CAS  Google Scholar 

  19. Golovkina, L.S. Orlova, A.I., et al., Spark plasma sintering of fine-grain ceramic–metal composites based on garnet-structure oxide Y2.5Nd0.5Al5O12 for inert matrix fuel, Mater. Chem. Phys., 2018, vol. 214, pp. 516–526.

    Article  CAS  Google Scholar 

  20. Sheludyak, Yu.E., Kashporov, L.Ya., Malinin, A.A., et al., Teplofizicheskie svoistva komponentov goryuchikh sistem (Thermophysical Properties of components of Fuel Systems), Moscow, 1992.

  21. Mikhailov, G.G., Makrovets, L.A., and Smirnov, L.A., Thermodynamics of reactions of magnesium, aluminum, carbon, and yttrium with oxygen in iron-based melts, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Metall., 2016, vol. 16, no. 3, pp. 5–10.

    Google Scholar 

  22. Adylov, G.T., Mansurova, E.P., and Sigalov, L.M., Phase relations in air, Dokl. Akad. Nauk USSR, 1988, no. 4, pp. 29–31.

  23. Chuvil'deev, V.N., Blagoveshchenskiy, Yu.V., Nokhrin, A.V., et al., Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis, J. Alloys. Compd., 2017, vol. 708, pp. 547–561.

    Article  CAS  Google Scholar 

  24. Andrievskii, A.R. and Spivak, I.I., Prochnost’ tugoplavkikh soedinenii i materialov na ikh osnove. Spravochnoe izdanie (Strength of Refractory Compounds and Related Materials: A Handbook), Chelyabinsk: Metallurgiya, 1989.

    Google Scholar 

  25. Haneda, H., Miyazawa, Y., and Shirasaki, S., Oxygen diffusion in single crystal yttrium aluminum garnet, J. Cryst. Growth, 1984, vol. 68, no. 2, pp. 581–588.

    Article  CAS  Google Scholar 

  26. Diffusion in Non-Metallic Solids (Part 1), vol. 33B1 of Landolt–Börnstein—Group III Condensed Materials, Beke, D.L., Ed., 1999.

    Google Scholar 

  27. Reddy, K.P.R. and Cooper, A.R., Oxygen diffusion in magnesium aluminate spinel, J. Am. Ceram. Soc., 1981, vol. 64, no. 6, pp. 368–371.

    Article  CAS  Google Scholar 

  28. Ando, K. and Oishi, Y., Self-diffusion coefficients of oxygen ion in single crystals of MgO · nAl2O3 spinels, J. Chem. Phys., 1974, vol. 61, no. 2, pp. 625–629.

    Article  CAS  Google Scholar 

  29. Frost, H.J. and Ashby, M.F., Deformation-Mechanisms Maps, New York: Pergamon, 1982.

    Google Scholar 

  30. Nokhrin, A.V., Effect of grain-boundary diffusion acceleration during recrystallization of submicrocrystalline metals and alloys prepared by severe plastic deformation, Tech, Phys. Lett., 2012, vol. 38, no. 7, pp. 630–633.

    Article  CAS  Google Scholar 

  31. Foster, J.D. and Osterink, L.M., Index of refraction and expansion thermal coefficients of Nd:YAG, Appl. Opt., 1968, vol. 7, pp. 2428–2429.

    Article  CAS  PubMed  Google Scholar 

  32. Kaprálik, I., Thermal expansion of spinels MgCr2O4, MgAl2O4 and MgFe2O4, Chem. Zvesti, 1969, vol. 23, pp. 665–670.

    Google Scholar 

  33. Pelleg, J., Diffusion in Ceramics, Solid Mechanics and Its Applications Series, New York: Springer, 2016, vol. 221.

    Google Scholar 

  34. Bratton, R.J., Initial sintering kinetics of MgAl2O4, J. Am. Ceram. Soc., 1969, vol. 52, no. 8, pp. 417–419.

    Article  CAS  Google Scholar 

  35. Bratton, R.J., Sintering and grain-growth kinetics of MgAl2O4, J. Am. Ceram. Soc., 1971, vol. 54, no. 3, pp. 141–143.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 16-13-10464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Golovkina.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovkina, L.S., Nokhrin, A.V., Boldin, M.S. et al. Preparation of Fine-Grained Y2.5Nd0.5Al5O12 + MgO composite ceramics for Inert Matrix Fuels by Spark Plasma Sintering. Inorg Mater 54, 1291–1298 (2018). https://doi.org/10.1134/S002016851812004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851812004X

Keywords:

Navigation