Skip to main content
Log in

Optical Properties of Thulium-Modified Silver Nanoparticles

  • Published:
Inorganic Materials Aims and scope

Abstract

We have prepared silver nanoparticles in thulium-modified colloidal solutions by “green” synthesis and investigated the optical properties of the resultant mixed solutions. The thulium ions have been shown to influence the properties of the colloidal silver nanoparticles. Thulium has a strong advantageous effect on the plasmon resonance of the silver nanoparticles, whereas the components of peppermint reduce the effect. The silver nanoparticles reduce the thulium ion photoluminescence intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Govindaraju, K., Khaleel Basha, S., Ganesh Kumar, V., and Singaravelu, G.J., A novel green synthesis of silver, gold and bimetallic nanoparticles using Spirulina platensis geitler, Mater. Sci., 2008, vol. 43, pp. 5115–5122.

    CAS  Google Scholar 

  2. Basiuk, V.A. and Basiuk, E.V., Green Processes for Nanotechnology, Berlin: Springer, 2015, p. 446.

    Google Scholar 

  3. Mittal, A.K., Chisti, Y., and Banerjee, U.C., Synthesis of metallic nanoparticles using plant extracts, Biotechnol. Adv., 2013, vol. 31, pp. 346–356. doi 10.1016/j.biotechadv.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  4. Harris, A.T. and Bali, R.J., On the formation and extent of uptake of silver nanoparticles by live plants, Nanopart. Res., 2008, vol. 10, pp. 691–695.

    Article  CAS  Google Scholar 

  5. Kajani, A.A., Bordbar, A.K., Zarhesh-Esfahani, S.H., and Razmjou, A., Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using Taxus baccata extract, RSC Adv., 2014, vol. 4, pp. 61394–61403. doi 10.1039/C4RA08758E

    Article  CAS  Google Scholar 

  6. Chandrasekhara Reddy, M., Sri Rama Murthy, K., Srilakshmi, A., Sambasiva Rao, K.R.S., and Pullaiah, T., Phytosynthesis of ecofriendly silver nanoparticles and biological applications—a novel concept in nanobiotechnology, Afr. J. Biotechnol., 2015, vol. 14, no. 3, pp. 222–247. doi 10.5897/AJB2013.13299

    Google Scholar 

  7. Roopan, S.M., Surendra, T.V., and Elango, G., Optical sensor for dissolved ammonia through the green synthesis of silver nanoparticles by fruit extract of Terminalia chebula, J. Sol–Gel Sci. Technol., 2015, vol. 73, pp. 476–483. doi 10.1007/s00253-014-5736-1

    Article  CAS  Google Scholar 

  8. Di Bartolo, B., Collins, J., and Silvestri, L., Chemical and strain engineering of functional oxides, in Nano-Structures for Optics and Photonics, New York: Springer, 2015, pp. 435–436.

    Google Scholar 

  9. Zhang, F., Photon Upconversion Materials, Berlin: Springer, 2015, pp. 413–415.

    Google Scholar 

  10. Chen, G., Damasco, J., Qiu, H., Shao, W., Ohulchanskyy, T.Y., and Rashid, R., Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal, Nano Lett., 2015, vol. 15, no. 11, pp. 7400–7407. doi 10.1021/acs.nanolett.5b02830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park, W., Lu, D., and Ahn, S., Plasmon enhancement of luminescence upconversion, Chem. Soc. Rev., 2015, vol. 44, no. 10, pp. 2940–2962. doi 10.1039/c5cs00050e

    Article  CAS  PubMed  Google Scholar 

  12. Geddes, Ch.D., US Patent Application 20090022766 A1, 2009.

    Google Scholar 

  13. Zhang, W., Ding, F., and Chou, S.Y., Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nanoantennas, Adv. Mater., 2012, vol. 24, no. 35, pp. OP236–OP241. doi 10.1002/adma.201200220

    CAS  PubMed  Google Scholar 

  14. Barrera, E.W., Pujo, M.C., Cascales, C., Zaldo, C., Park, K.H., Choi, S.B., Rotermund, F., and Carvajal, J.J., Spectroscopic characterization of sol–gel synthesized Tm:Lu2O3 nanocrystals, Appl. Phys. B, 2012, vol. 106, no. 2, pp. 409–417. doi 10.1007/s00340-011-4691-0

    Article  CAS  Google Scholar 

  15. Hovel, J.H., Fritz, S., Hilger, A., Kreibig, U., and Vollmer, M., Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping, Phys. Rev. B: Condens. Matter Mater. Phys., 1993, vol. 48, no. 24, pp. 18 178–18 188. doi 10.1103/Phys-RevB.48.18178

    Article  Google Scholar 

  16. Khlebtsov, N.G., Optics and biophotonics of nanoparticles with a plasmon resonance, Kvantovaya Elektron. (Moscow), 2008, vol. 38, no. 6, pp. 504–529.

    Article  CAS  Google Scholar 

  17. Rasmagin, S.I., Krasovskii, V.I., Apresyan, L.A., Kryshtob, V.I., and Kazaryan, M.A., Investigation of changes in the optical properties of a colloidal solution of silver nanoparticles with the addition of europium ions, in Pulsed Lasers and Laser Applications—“AMPL-2017” Abstracts of XIII Int. Conf., 2017, pp. 56–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Rasmagin.

Additional information

Original Russian Text © S.I. Rasmagin, V.I. Kryshtob, I.K. Novikov, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 9, pp. 918–923.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasmagin, S.I., Kryshtob, V.I. & Novikov, I.K. Optical Properties of Thulium-Modified Silver Nanoparticles. Inorg Mater 54, 868–872 (2018). https://doi.org/10.1134/S0020168518090121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518090121

Keywords

Navigation