Inorganic Materials

, Volume 54, Issue 4, pp 338–348 | Cite as

Growth Kinetics and Microstructure of PbTe Films Produced on Si and BaF2 Substrates by a Modified Hot-Wall Method

  • A. M. Samoylov
  • O. G. Kuzminykh
  • Yu. V. Synorov
  • E. K. Belonogov
  • S. V. Belenko
  • B. L. Agapov


Lead telluride films have been grown on Si (100) and BaF2 (100) substrates by a modified hot-wall method using a graphite reaction chamber. According to X-ray diffraction, X-ray microanalysis, and scanning electron microscopy characterization results, the average growth rate of PbTe films having compositions within the homogeneity range of lead telluride increases with increasing lead vapor partial pressure and decreases with increasing tellurium vapor partial pressure, independent of the nature of the substrate. The rate of PbTe film growth has been shown to be maximal in the initial stage of the process and decrease monotonically over time, independent of the nature of the substrate. Independent of the growth time, the average growth rate of the PbTe films on the Si (100) substrates is considerably higher than that on the BaF2 (100) substrates. Reflection high-energy electron diffraction data indicate that the texture of the PbTe films on Si (100) corresponds to the substrate orientation and that the misorientation angle of the mosaic blocks does not exceed 20°. On the BaF2 (100) substrates, we observe epitaxial PbTe film growth with the orientation relationship (100), [011] PbTe ║ (100), [011] BaF2.


lead telluride thin films silicon barium fluoride growth rate microstructure epitaxy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lead Chalcogenides: Physics and Applications, Khohlov, D., Ed., New York: CRC, 2003.Google Scholar
  2. 2.
    Infrared Detectors and Emitters: Materials and Devices, Capper, P. and Elliot, C.T., Eds., Berlin: Springer, 2001.Google Scholar
  3. 3.
    Rogalski, A., Infrared Detectors, New York: CRC, 2011.Google Scholar
  4. 4.
    Popescu, A. and Woods, L.M., Enhanced thermoelectricity in composites by electronic structure modifications and nanostructuring, Appl. Phys. Lett., 2010, vol. 97, paper 052102.Google Scholar
  5. 5.
    Shaibal Mukherjee, Donghui Li, Anurag Gautam, Kar, J.P., and Zhisheng Shi, Lead Salt Thin Film Semiconductors for Microelectronic Applications, Kerala: Transworld Research Network, 2010.Google Scholar
  6. 6.
    Zimin, S.P. and Gorlachev, E.S., Nanostrukturirovannye khal’kogenidy svintsa (Nanostructured Lead Chalcogenides), Yaroslavl: Yaroslavsk. Gos. Univ., 2011.Google Scholar
  7. 7.
    Samoylov, A.M., Belenko, S.V., Sharov, M.K., Dolgopolova, E.A., and Zlomanov, V.P., The deviation from a stoichiometry and the amphoteric behavior of Ga in PbTe/Si films, J. Cryst. Growth, 2012, vol. 351, pp. 149–154.CrossRefGoogle Scholar
  8. 8.
    Virt, I.S., Tur, Y., Rudyi, I.O., Lopatynskyi, I.Ye., Frugynskyi, M.S., Kurilo, I.V., Lusakowska, E., Witkowski, B.S., and Luka, G., Control of the crystal structure and electrical transport in undoped PbTe films grown by pulsed laser deposition, J. Cryst. Growth, 2015, vol. 432, pp. 19–23.CrossRefGoogle Scholar
  9. 9.
    Zogg, H. et al., Epitaxial lead chalcogenides on Si for mid-IR detectors and emitters including cavities, J. Electron. Mater., 2008, vol. 37, no. 9, pp. 1497–1503.CrossRefGoogle Scholar
  10. 10.
    Zogg, H. and Arnold, M., Narrow spectral band monolithic lead-chalcogenide-on-Si mid-IR photodetectors, Opto-Electron. Rev., 2006, vol. 14, no. 1, pp. 33–36.CrossRefGoogle Scholar
  11. 11.
    Ryabova, L.I. and Khokhlov, D.R., Terahertz photoconductivity and nontrivial local electronic states in doped lead telluride-based semiconductors, Usp. Fiz. Nauk, 2014, vol. 184, no. 10, pp. 1033–1044.CrossRefGoogle Scholar
  12. 12.
    Arata Yasuda, Ken Suto, and Jun-ichi Nishizawa, Lasing properties of PbSnTe/PbTe double hetero midinfrared laser diodes grown by temperature difference method under controlled vapor pressure liquid-phase epitaxy, Mater. Sci. Semicond. Process., 2014, vol. 27, pp. 159–162.CrossRefGoogle Scholar
  13. 13.
    Harman, T.C., Taylor, P.J., Walsh, M.P., and La Forge, B.E., Quantum dot superlattice thermoelectric materials and devices, Science, 2002, no. 297, pp. 2229–2232.CrossRefGoogle Scholar
  14. 14.
    Gelbstein, Y., Dashevsky, Z., and Dariel, M.P., High performance n-type PbTe-based materials for thermoelectric applications, Phys. B (Amsterdam, Neth.), 2005, vol. 363, pp. 196–205.CrossRefGoogle Scholar
  15. 15.
    Li, J.Q., Lu, Z.W., Li, S.M., Liu, F.S., Ao, W.Q., and Li, Y., High thermoelectric properties of PbTe–Sm2Se3 composites, Scr. Mater., 2016, vol. 112, pp. 144–147.CrossRefGoogle Scholar
  16. 16.
    Baleva, M., Bozukov, L., and Tzukeva, E., Crystal structure of PbTe films grown on KCl substrates by laser-assisted deposition, Semicond. Sci. Technol., 1993, vol. 8, pp. 1208–1216.CrossRefGoogle Scholar
  17. 17.
    Craievich, A.F., Kellermann, G., Barbosa, L.C., and Alves, O.L., Structure characterization and mechanism of growth of PbTe nanocrystals embedded in a silicate glass, Phys. Rev. Lett., 2002, vol. 89, paper 235503.Google Scholar
  18. 18.
    Handbook of Semiconductor Technology, Johnson, K.A. and Schrötter, W., Eds., New York: Wiley, 2001, vol.2.Google Scholar
  19. 19.
    Ugai, Ya.A., Samoilov, A.M., Synorov, Yu.V., Yatsenko, O.B., and Zuev, D.V., Thin PbTe films on Si substrates, Inorg. Mater., 1994, vol. 30, no. 7, pp. 834–837.Google Scholar
  20. 20.
    Ugai, Ya.A., Samoilov, A.M., Agapov, B.A., Dolgopolova, E.A., and Sharov, M.K., Structural perfection of thin PbTe films on Si substrates, Inorg. Mater., 1998, vol. 34, no. 9, pp. 873–877.Google Scholar
  21. 21.
    Ugai, Ya.A., Samoylov, A.M., Sharov, M.K., and Tadeev, A.V., Crystal microstructure of PbTe/Si and PbTe/SiO2/Si thin films, Thin Solid Films, 1998, vol. 336, pp. 196–200.CrossRefGoogle Scholar
  22. 22.
    Laska, V.L., Kondrat’ev, A.V., and Potapenko, A.A., Gettering efficiency in vacuum mass transfer, Inzh.-Fiz. Zh., 1984, vol. 46, no. 6, pp. 949–952.Google Scholar
  23. 23.
    JCPDS–International Centre for Diffraction Data, Newtown Square: JCPDS–ICDD, 1987–2008.Google Scholar
  24. 24.
    Sveshnikova, L.L., USSR Inventor’s Certificate no. 1281085, 1986.Google Scholar
  25. 25.
    Samoylov, A.M., Targeted synthesis of gallium-and indium-doped lead telluride films with controlled doping levels and deviations from stoichiometry, Extended Abstract of Doctoral (Chem.) Dissertation, Voronezh, 2006.Google Scholar
  26. 26.
    Brebrick, R.F. and Allgaier, K.S., Composition stability limits of PbTe, J. Chem. Phys., 1960, vol. 32, no. 6, pp. 1826–1832.CrossRefGoogle Scholar
  27. 27.
    Ievlev, V.M., Tonkie plenki neorganicheskikh materialov: mekhanizmy rosta i struktura (Thin Films of Inorganic Materials: Growth Mechanisms and Structure), Voronezh: Voronezhsk. Gos. Univ., 2008.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. M. Samoylov
    • 1
  • O. G. Kuzminykh
    • 1
  • Yu. V. Synorov
    • 2
  • E. K. Belonogov
    • 1
    • 3
  • S. V. Belenko
    • 4
  • B. L. Agapov
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Voronezh State University of Engineering TechnologiesVoronezhRussia
  3. 3.Voronezh State Technical UniversityVoronezhRussia
  4. 4.JSC VSP-MikronVoronezhRussia

Personalised recommendations