Skip to main content
Log in

Growth Kinetics and Microstructure of PbTe Films Produced on Si and BaF2 Substrates by a Modified Hot-Wall Method

  • Published:
Inorganic Materials Aims and scope

Abstract

Lead telluride films have been grown on Si (100) and BaF2 (100) substrates by a modified hot-wall method using a graphite reaction chamber. According to X-ray diffraction, X-ray microanalysis, and scanning electron microscopy characterization results, the average growth rate of PbTe films having compositions within the homogeneity range of lead telluride increases with increasing lead vapor partial pressure and decreases with increasing tellurium vapor partial pressure, independent of the nature of the substrate. The rate of PbTe film growth has been shown to be maximal in the initial stage of the process and decrease monotonically over time, independent of the nature of the substrate. Independent of the growth time, the average growth rate of the PbTe films on the Si (100) substrates is considerably higher than that on the BaF2 (100) substrates. Reflection high-energy electron diffraction data indicate that the texture of the PbTe films on Si (100) corresponds to the substrate orientation and that the misorientation angle of the mosaic blocks does not exceed 20°. On the BaF2 (100) substrates, we observe epitaxial PbTe film growth with the orientation relationship (100), [011] PbTe ║ (100), [011] BaF2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lead Chalcogenides: Physics and Applications, Khohlov, D., Ed., New York: CRC, 2003.

  2. Infrared Detectors and Emitters: Materials and Devices, Capper, P. and Elliot, C.T., Eds., Berlin: Springer, 2001.

  3. Rogalski, A., Infrared Detectors, New York: CRC, 2011.

    Google Scholar 

  4. Popescu, A. and Woods, L.M., Enhanced thermoelectricity in composites by electronic structure modifications and nanostructuring, Appl. Phys. Lett., 2010, vol. 97, paper 052102.

  5. Shaibal Mukherjee, Donghui Li, Anurag Gautam, Kar, J.P., and Zhisheng Shi, Lead Salt Thin Film Semiconductors for Microelectronic Applications, Kerala: Transworld Research Network, 2010.

    Google Scholar 

  6. Zimin, S.P. and Gorlachev, E.S., Nanostrukturirovannye khal’kogenidy svintsa (Nanostructured Lead Chalcogenides), Yaroslavl: Yaroslavsk. Gos. Univ., 2011.

    Google Scholar 

  7. Samoylov, A.M., Belenko, S.V., Sharov, M.K., Dolgopolova, E.A., and Zlomanov, V.P., The deviation from a stoichiometry and the amphoteric behavior of Ga in PbTe/Si films, J. Cryst. Growth, 2012, vol. 351, pp. 149–154.

    Article  CAS  Google Scholar 

  8. Virt, I.S., Tur, Y., Rudyi, I.O., Lopatynskyi, I.Ye., Frugynskyi, M.S., Kurilo, I.V., Lusakowska, E., Witkowski, B.S., and Luka, G., Control of the crystal structure and electrical transport in undoped PbTe films grown by pulsed laser deposition, J. Cryst. Growth, 2015, vol. 432, pp. 19–23.

    Article  CAS  Google Scholar 

  9. Zogg, H. et al., Epitaxial lead chalcogenides on Si for mid-IR detectors and emitters including cavities, J. Electron. Mater., 2008, vol. 37, no. 9, pp. 1497–1503.

    Article  CAS  Google Scholar 

  10. Zogg, H. and Arnold, M., Narrow spectral band monolithic lead-chalcogenide-on-Si mid-IR photodetectors, Opto-Electron. Rev., 2006, vol. 14, no. 1, pp. 33–36.

    Article  CAS  Google Scholar 

  11. Ryabova, L.I. and Khokhlov, D.R., Terahertz photoconductivity and nontrivial local electronic states in doped lead telluride-based semiconductors, Usp. Fiz. Nauk, 2014, vol. 184, no. 10, pp. 1033–1044.

    Article  Google Scholar 

  12. Arata Yasuda, Ken Suto, and Jun-ichi Nishizawa, Lasing properties of PbSnTe/PbTe double hetero midinfrared laser diodes grown by temperature difference method under controlled vapor pressure liquid-phase epitaxy, Mater. Sci. Semicond. Process., 2014, vol. 27, pp. 159–162.

    Article  Google Scholar 

  13. Harman, T.C., Taylor, P.J., Walsh, M.P., and La Forge, B.E., Quantum dot superlattice thermoelectric materials and devices, Science, 2002, no. 297, pp. 2229–2232.

    Article  CAS  Google Scholar 

  14. Gelbstein, Y., Dashevsky, Z., and Dariel, M.P., High performance n-type PbTe-based materials for thermoelectric applications, Phys. B (Amsterdam, Neth.), 2005, vol. 363, pp. 196–205.

    Article  CAS  Google Scholar 

  15. Li, J.Q., Lu, Z.W., Li, S.M., Liu, F.S., Ao, W.Q., and Li, Y., High thermoelectric properties of PbTe–Sm2Se3 composites, Scr. Mater., 2016, vol. 112, pp. 144–147.

    Article  CAS  Google Scholar 

  16. Baleva, M., Bozukov, L., and Tzukeva, E., Crystal structure of PbTe films grown on KCl substrates by laser-assisted deposition, Semicond. Sci. Technol., 1993, vol. 8, pp. 1208–1216.

    Article  CAS  Google Scholar 

  17. Craievich, A.F., Kellermann, G., Barbosa, L.C., and Alves, O.L., Structure characterization and mechanism of growth of PbTe nanocrystals embedded in a silicate glass, Phys. Rev. Lett., 2002, vol. 89, paper 235503.

  18. Handbook of Semiconductor Technology, Johnson, K.A. and Schrötter, W., Eds., New York: Wiley, 2001, vol.2.

  19. Ugai, Ya.A., Samoilov, A.M., Synorov, Yu.V., Yatsenko, O.B., and Zuev, D.V., Thin PbTe films on Si substrates, Inorg. Mater., 1994, vol. 30, no. 7, pp. 834–837.

    Google Scholar 

  20. Ugai, Ya.A., Samoilov, A.M., Agapov, B.A., Dolgopolova, E.A., and Sharov, M.K., Structural perfection of thin PbTe films on Si substrates, Inorg. Mater., 1998, vol. 34, no. 9, pp. 873–877.

    CAS  Google Scholar 

  21. Ugai, Ya.A., Samoylov, A.M., Sharov, M.K., and Tadeev, A.V., Crystal microstructure of PbTe/Si and PbTe/SiO2/Si thin films, Thin Solid Films, 1998, vol. 336, pp. 196–200.

    Article  CAS  Google Scholar 

  22. Laska, V.L., Kondrat’ev, A.V., and Potapenko, A.A., Gettering efficiency in vacuum mass transfer, Inzh.-Fiz. Zh., 1984, vol. 46, no. 6, pp. 949–952.

    Google Scholar 

  23. JCPDS–International Centre for Diffraction Data, Newtown Square: JCPDS–ICDD, 1987–2008.

  24. Sveshnikova, L.L., USSR Inventor’s Certificate no. 1281085, 1986.

  25. Samoylov, A.M., Targeted synthesis of gallium-and indium-doped lead telluride films with controlled doping levels and deviations from stoichiometry, Extended Abstract of Doctoral (Chem.) Dissertation, Voronezh, 2006.

    Google Scholar 

  26. Brebrick, R.F. and Allgaier, K.S., Composition stability limits of PbTe, J. Chem. Phys., 1960, vol. 32, no. 6, pp. 1826–1832.

    Article  CAS  Google Scholar 

  27. Ievlev, V.M., Tonkie plenki neorganicheskikh materialov: mekhanizmy rosta i struktura (Thin Films of Inorganic Materials: Growth Mechanisms and Structure), Voronezh: Voronezhsk. Gos. Univ., 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Samoylov.

Additional information

Original Russian Text © A.M. Samoylov, O.G. Kuzminykh, Yu.V. Synorov, E.K. Belonogov, S.V. Belenko, B.L. Agapov, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 4, pp. 359–369.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoylov, A.M., Kuzminykh, O.G., Synorov, Y.V. et al. Growth Kinetics and Microstructure of PbTe Films Produced on Si and BaF2 Substrates by a Modified Hot-Wall Method. Inorg Mater 54, 338–348 (2018). https://doi.org/10.1134/S002016851804012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851804012X

Keywords

Navigation