Skip to main content
Log in

Modeling of the Electrochemical Transformation of Chemical Energy of Biofuel to Electricity

  • NEW ENERGETICS
  • Published:
High Temperature Aims and scope

Abstract

A thermodynamic model is proposed for the electrochemical process of the conversion of the chemical energy of biofuels into electricity in a fuel cell of direct carbon oxidation. It is shown that, with the use of polarization resistance from the experiment, a current density of 0.1–0.5 A/cm2 provides a power-plant efficiency in the range of 87–55%. At an operating temperature of 1073 K, carbon is oxidized mainly to monoxide, which is why the initial portion of the fuel cell is actually a gasifier, and the rest is a conventional solid oxide synthesis gas fuel cell. In the gasification section, the electrochemical process proceeds with heat absorption and has an ideal thermal efficiency above unity. It is advisable to separate these two sections constructively to optimize the heat transfer between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Aslanian, G.S., Farinelli, Ugo., Ivanov, P.P., and Medin, S.A., in Perspectives in Energy, 1997–1998, vol. 4, p. 241.

  2. Batenin, V.M., Ivanov, P.P., and Kovbasyuk, V.I., High Temp., 2017, vol. 55, no. 1, p. 70.

    Article  Google Scholar 

  3. Verma, A., Rao, A.D., and Samuelsen, G.S., J. Power Sources, 2006, vol. 158, p. 417.

    Article  ADS  Google Scholar 

  4. Seitarides, Th., Athanasiou, C., and Zabaniotou, A., Renewable Sustainable Energy Rev., 2008, vol. 12, p. 1251.

    Article  Google Scholar 

  5. Romano, M.C., Campanari, S., Spallina, V., and Lozza, G., in Proc. ASME Turbo Expo 2009: Power for Land, Sea, and (Air GT2009), Orlando, Florida, 2009, GT2009-59551.

  6. Newby, R. and Keairns, D., Analysis of integrated gasification fuel cell plant configurations, DOE/NETL-2011/1482, February 25, 2011.

  7. Dey, T., Singdeo, D., Pophale, A., Bose, M., and Ghosh, P.C., in Proc. 4th Int. Conf. Advances in Energy Research (ICAER)2013, Mumbai, India, Energy Proc., 2014, vol. 54, p. 748.

  8. Chen, S., Lior, N., and Xiang, W., Appl. Energy, 2015, vol. 146, p. 298.

    Article  Google Scholar 

  9. Galvagno, A., Prestipino, M., Zafarana, G., and Chiodo, V., in Proc. 71st Conf. of the Italian Thermal Machines Engineering Association, ATI2016, Turin, Italy, Energy Proc., 2016, vol. 101, p. 528.

  10. Dubinin, A.M. and Shcheklein, S.E., Int. J. Hydrogen Energy, 2007, vol. 42, p. 26048.

    Article  Google Scholar 

  11. Pointon, K., Lakeman, B., Irvine, J., Bradley, J., and Jain, S., J. Power Sources, 2006, vol. 162, p. 750.

    Article  ADS  Google Scholar 

  12. Nabae, Y., Pointon, K.D., and Irvine, J.T.S., Energy Environ. Sci., 2008, vol. 1, p. 148.

    Article  Google Scholar 

  13. Jiang, C., Ma, J., Bonaccorso, A.D., and Irvine, J.T.S., Energy Environ. Sci., 2012, vol. 5, p. 6973.

    Article  Google Scholar 

  14. Arenillas, A., Menéndez, J.A., Marnellos, G.E., Konsolakis, M., Kyriakou, V., Kammer, K., Jiang, C., Chien, A., and Irvine, J.T.S., Bol. Grupo Español Carbón, 2013, no. 29, p. 8.

  15. Lee, J.-Y., Song, R.-H., Lee, S.-B., Lim, T.-H., Park, S.-J., Shul, Y.G., and Lee, J., Int. J. Hydrogen Energy, 2004, vol. 39, p. 11749.

    Article  Google Scholar 

  16. Deleebeeck, L. and Hansen, K.K., J. Fuel Cell Sci. Technol., 2015, vol. 12, 064501.

    Article  Google Scholar 

  17. Fuente-Cuesta, A., Jiang, C., Arenillas, A., and Irvine, J.T.S., Energy Environ. Sci., 2016, vol. 9, p. 2868.

    Article  Google Scholar 

  18. Wu, W., Zhang, Y., Ding, D., and He, T., Adv. Mater., 2017, p. 1704745.

  19. Belov, G.V., Iorish, V.S., and Yungman, V.S., High Temp., 2000, vol. 38, no. 2, p. 191.

    Article  Google Scholar 

  20. Gaur, S., Reed, T., Thermal Data and Natural Synthetic Fuels, New York: Marcel Dekker, 1998.

    Google Scholar 

  21. Jenkins, B.M. and Ebeling, J.M., Thermochemical Properties of Biomass Fuels, California Agriculture, 1985.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuk, A.Z., Ivanov, P.P. & Kiseleva, E.A. Modeling of the Electrochemical Transformation of Chemical Energy of Biofuel to Electricity. High Temp 58, 292–296 (2020). https://doi.org/10.1134/S0018151X20020224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20020224

Navigation