Braking of a Magnetized Body at the Interaction of Its Magnetic Field with a Rarified Plasma Flow

Abstract

The features of the flow around and the dynamic interaction of a magnetized sphere with a hypersonic flow of a rarefied plasma are studied via physical simulation. The dependences of the coefficients of the electromagnetic drag of a sphere on the ratio of the magnetic pressure to the dynamic pressure are obtained for the axial and orthogonal orientations of the plasma flow vectors and of the body’s own magnetic field. At an magnetic field of the sphere of 0.8–1.5 T, the electromagnetic force generated in the “magnetic field of the sphere–surrounding plasma” system is comparable to the pulse injected by plasma accelerators of special spacecraft designed for forced (“active”) removal of objects of space debris from the near-Earth space via their braking with a plasma jet, removing to lower orbits, and disposal by combustion in the dense layers of the Earth’s atmosphere. Small, permanent magnets can be used arranged in a particular manner (Halbach magnetic arrays) to create energy-efficient, compact sources of the magnetic field of these objects with an induction of 0.8–1.5 T.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    Bush, W.B., J. Aerosp. Sci., 1958, vol. 25, no. 11, p. 685.

    Article  Google Scholar 

  2. 2

    Kulikovskii, A.G., Dokl. Akad. Nauk SSSR, 1957, vol. 117, no. 2, p. 199.

    MathSciNet  Google Scholar 

  3. 3

    Kulikovskii, A.G. and Lyubimov, G.A., Magnitnaya gidrodinamika (Magnetic Hydrodynamics), Moscow: Fizmatlit, 1962.

  4. 4

    Pai Shih-I, Magnetogasdynamics and Plasma Dynamics, Wien: Springer, 1962.

  5. 5

    Bityurin, V.A., Bocharov, A.N., and Popov, A.N., High Temp., 2010, vol. 48, p. 874.

    Article  Google Scholar 

  6. 6

    Bocharov, A.N., High Temp., 2010, vol. 48, no. 4, p. 461.

    Article  Google Scholar 

  7. 7

    Bityurin, V.A., Vatazhin, A.B., Gus’kov, O.V., and Kopchenov, V.I., Fluid Dyn., 2004, vol. 39, no. 4, p. 657.

    ADS  Article  Google Scholar 

  8. 8

    Katsurayama, H., Kawamura, M., Matsuda, A., and Abe, T., J. Spacecr. Rockets, 2008, vol. 45, no. 2, p. 248.

    ADS  Article  Google Scholar 

  9. 9

    Bityurin, V.A., Bocharov, A.N., and Popov, A.N., J. Phys. D: Appl. Phys., 2019, vol. 52, no. 35, 354001.

    Article  Google Scholar 

  10. 10

    Zubrin, P.M. and Andrews, D.G., J. Spacecr. Rockets, 1991, vol. 28, no. 2, p. 197.

    ADS  Article  Google Scholar 

  11. 11

    Fujita, K., J. Space Technol. Sci., 2005, vol. 20, no. 2, p. 26.

    Google Scholar 

  12. 12

    Nishida, H. and Funaki, I., J. Propul. Power, 2012, vol. 28, no. 3, p. 636.

    Article  Google Scholar 

  13. 13

    Fujino, T. and Shimosowa, Y., J. Spacecr. Rockets, 2016, vol. 53, no. 3, p. 528.

    ADS  Article  Google Scholar 

  14. 14

    Gun’ko, Yu.F., Kurbatova, G.I., and Filippov, B.V., in Aerodinamika razrezhennykh gazov (Aerodynamics of Rarefied Gases), Leningrad: Leningrad. Gos. Univ., 1973, no. 6, p. 54.

  15. 15

    Inamori, T., Kawashima, R., Saisutjarit, P., Sako, N., and Ohsaki, H., Acta Astronaut., 2015, vol. 112, p. 192.

    ADS  Article  Google Scholar 

  16. 16

    Kawashima, R., Bak, J., Matsurawa, S., and Inamori, T., J. Spacecr. Rockets, 2018, vol. 55, no. 5, p. 1074.

    ADS  Article  Google Scholar 

  17. 17

    Galkin, V.S. Inzh. Zh., 1965, vol. 5, no. 5, p. 954.

    Google Scholar 

  18. 18

    Moe, K., Moe, M.M., and Wallace, S.D., J. Spacecr. Rockets, 1998, vol. 35, no. 3, p. 266.

    ADS  Article  Google Scholar 

  19. 19

    Fundamentals of Gas Dynamics, Emmons, H.W., Ed., Princeton: Princeton Univ. Press, 1958.

    Google Scholar 

  20. 20

    Mehta, P.M., Walker, A., McLaughlin, C.A., and Koller, J., J. Spacecr. Rockets, 2014, vol. 51, no. 3, p. 873.

    ADS  Article  Google Scholar 

  21. 21

    Podgornyi, I.M. and Sagdeev, R.Z., Sov. Phys. Usp., 1970, vol. 12, no. 3, p. 445.

    ADS  Article  Google Scholar 

  22. 22

    Al’pert, Ya.L., Gurevich, A.V., and Pitaevskii, L.P., Iskusstvennye sputniki v razrezhennoi plazme (Artificial Satellites in Rarefied Plasma), Moscow: Nauka, 1964.

  23. 23

    Mitchner, M. and Kruger, Ch.H., Jr., Partially Ionized Gases, New York: Wiley, 1973.

    Google Scholar 

  24. 24

    Kotel’nikov, V.A. and Kotel’nikov, M.V., High Temp., 2017, vol. 55, no. 4, p. 334.

    Article  Google Scholar 

  25. 25

    Shuvalov, V.A., Kochubei, G.S., Priimak, A.I., Reznichenko, N.P., Tokmak, N.A., and Lazuchenkov, D.N., High Temp., 2005, vol. 43, no. 3, p. 335.

    Article  Google Scholar 

  26. 26

    Mustafaev, A.S., Nekuchaev, V.O., and Sukhomlinov, V.S., High Temp., 2018, vol. 56, no. 2, p. 162.

    Article  Google Scholar 

  27. 27

    Spacecraft/Plasma Interaction, and Electromagnetic Effects in LEO and Polar Orbits, Final Rep. ESA/ESTEC Contract Rep., vol. 1, no. 7989/88/NL/PB(SC), Culham Laboratory, Abingdon, Oxon, UK, 1990.

  28. 28

    Braginskii, S.I., in Voprosy teorii plazmy (Plasma Theory Issues), Moscow: Gosatomizdat, 1963, no. 1, p. 191.

  29. 29

    Shuvalov, V.A., Teplofiz,Vys. Temp., 1987, vol. 25, no. 4, p. 644.

    Google Scholar 

  30. 30

    Cook, G.E., Planet. Space Sci., 1965, vol. 13, p. 926.

    ADS  Google Scholar 

  31. 31

    Pyarnpuu, A.A., Entropie, 1971, no. 42, p. 91.

  32. 32

    Knechtel, E.D. and Pitts, W.C. AIAA J., 1964, vol. 2, no. 6, p. 1148.

    ADS  Article  Google Scholar 

  33. 33

    Maslennikov, M.V., Sigov, V.S., and Churkina, G.P., Kosm. Issled., 1968, vol. 6, no. 2, p. 220.

    Google Scholar 

  34. 34

    Wood, G.P., The electric drag forces on a satellite in the Earth’s upper atmosphere, in Proc. NASA-Univ. Conf. on the Science and Technology of Space Exploration, Chicago, 1962, vol. 2, p. 337.

  35. 35

    Shuvalov, V.A., Gorev, N.B., Tokmak, N.A., and Kochubei, G.S., Cosmic Res., 2018, vol. 56, no. 3, p. 223.

    ADS  Article  Google Scholar 

  36. 36

    Shuvalov, V.A., Tokmak, N.A., Pis’mennyi, N.I., Kulagin, S.N., and Kochubei, G.S., High Temp., 2018, vol. 56, no. 4, p. 473.

    Article  Google Scholar 

  37. 37

    Hadjimichalis, K.S. and Brunding, C.L., The effect of wall temperature on sphere drag in hypersonic transition flow, in Proc. 9th Int. Symp. on Rarefied Gas Dynamics, Göttingen, 1974, paper no. D.13.

  38. 38

    Katsurayama, H. and Abe, T., in Proc. 49th AIAA Aerospace Sci. Meeting, Orlando, FL, 2011.

  39. 39

    Kawamura, H., Matsuda, A., Katsurayama, H., Otsu, H., Konigroshi, D., Sato, S., and Abe, T., J. Spacecr. Rockets, 2009, vol. 46, no. 6, p. 1171.

    ADS  Article  Google Scholar 

  40. 40

    Funaki, I., Kojima, H., Yamakawa, H., Nakayama, Y., and Shimizu, Y., Astrophys. Space Sci., 2007, no. 307, p. 63.

  41. 41

    Halbach, K., J. Appl. Phys., 1985, vol. 57, no. 1, p. 3605.

    ADS  Article  Google Scholar 

  42. 42

    Chapman, S. and Ferraro, V.C., Terr. Magn. Atmos. Electr., 1931, vol. 36, no. 3, p. 77.

    Article  Google Scholar 

  43. 43

    Ferraro, V.C., Terr. Magn. Atmos. Electr., 1940, vol. 45, no. 9, p. 245.

    Article  Google Scholar 

  44. 44

    Meeker, D., FEMM: Finite Element Method Magnetics, ver. 4.2, User Manual, 2018.

    Google Scholar 

  45. 45

    Toivanen, P.K., Janhunen, P., and Koskinen, H.E.J., Magnetospheric Propulsion (eMPii). ESTEC/Contractor N16361/02/NL/LvH, Final Rep. no. 1.3, April 5, 2004.

  46. 46

    Nishida, H., Ogawa, H., Funaki, I., Fujita, K., and Yamakawa, H., J. Spacecr. Rockets, 2006, vol. 43, no. 3, p. 667.

    ADS  Article  Google Scholar 

  47. 47

    Mark, C.P. and Kamath, S., Space Policy, 2019, vol. 47, p. 194.

    Article  Google Scholar 

Download references

Funding

The work was carried out in the framework of the project “Target Integrated Program of the National Academy of Sciences of Ukraine for Scientific Space Research for 2018–2022.”

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Shuvalov.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shuvalov, V.A., Tokmak, N.A., Kuchugurnyi, Y.P. et al. Braking of a Magnetized Body at the Interaction of Its Magnetic Field with a Rarified Plasma Flow. High Temp 58, 151–161 (2020). https://doi.org/10.1134/S0018151X20020182

Download citation