Low-Parametric Equation of State of Aluminum

Abstract

A low-parameter equation of state of aluminum is constructed based on the proposed dependence of the Grüneisen coefficient on the specific volume and temperature. The characteristics of the state of aluminum in the region of high pressures and temperatures are determined: zero and normal isotherms; heat capacity; isentropic bulk compression modulus; the family of shock adiabats corresponding to different initial densities; secondary compression and discharge curves; and the speed of sound. The calculated values are close to the available experimental data. This indicates the adequacy of the proposed approach to the construction of a thermodynamically consistent equation of state of aluminum before three- to fourfold compression.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    Zharkov, V.N. and Kalinin, V.A., Uravneniya sostoyaniya tverdykh tel pri vysokikh davleniyakh i temperaturakh (The Equations of State of Solids at High Pressures and Temperatures), Moscow: Nauka, 1968.

  2. 2

    Eliezer, S., Ghatak, A., and Hora, H., Fundamentals of Equations of State, New Jersey: World Sci., 2002.

    Google Scholar 

  3. 3

    Fortov, V.E., Uravneniya sostoyaniya veshchestva ot ideal’nogo gaza do kvark-glyuonnoi plazmy (The Equations of State of Matter from an Ideal Gas to a Quark-Gluon Plasma), Moscow: Fizmatlit, 2012.

    Google Scholar 

  4. 4

    Bushman, A.V. and Fortov, V.E., Sov. Phys. Usp., 1983, vol. 26, no. 6, p. 465.

    ADS  Article  Google Scholar 

  5. 5

    Godwal, B.K., Sikka, S.K., and Chidambaram, R., Phys. Rep., 1983, vol. 102, no. 3, p. 121.

    ADS  Article  Google Scholar 

  6. 6

    Al’tshuler, L.V., Bushman, A.V., Zhernokletov, M.V., et al., Zh. Eksp. Teor. Fiz., 1980, vol. 78, no. 2, p. 741.

    Google Scholar 

  7. 7

    Al’tshuler, L.V., Brusnikin, S.E., and Kuz’menkov, E.A., J. Appl. Mech. Tech. Phys., 1987, vol. 28, no. 1, p. 129.

    ADS  Article  Google Scholar 

  8. 8

    Gordeev, D.G., Gudarenko, L.F., Kayakin, A.A., et al., Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., 2010, no. 3, p. 26.

  9. 9

    Gordeev, D.G., Gudarenko, L.F., Kayakin, A.A., and Kudel’kin, V.G., Combust., Explos. Shock Waves (Engl. Transl.), 2013, vol. 49, no. 1, p. 92.

  10. 10

    Lomonosov, I.V. and Fortova, S.V., High Temp., 2017, vol. 55, no. 4, p. 585.

    Article  Google Scholar 

  11. 11

    Khishchenko, K.V., Fortov, V.E., and Lomonosov, I.V., Int. J. Thermophys., 2005, vol. 26, no. 2, p. 479.

    ADS  Article  Google Scholar 

  12. 12

    Lomonosov, I.V., Laser Part. Beams, 2007, vol. 25, p. 567.

    ADS  Article  Google Scholar 

  13. 13

    Vinet, P., Rose, J.H., Ferrante, J., and Smith, J.R., J. Phys.: Condens. Matter, 1989, vol. 1, no. 11, p. 1941.

    ADS  Google Scholar 

  14. 14

    Taravillo, M., García Baonza, V., Núñez, J., and Cáceres, M., Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 54, no. 10, p. 7034.

    ADS  Article  Google Scholar 

  15. 15

    Roy, S.B. and Roy, P.B., J. Phys.: Condens. Matter, 1999, vol. 11, no. 50, p. 10375.

    Google Scholar 

  16. 16

    Holzapfel, W.B., Equations of State and thermophysical properties of solids under pressure, in High Pressure Crystallography. NATO Science Series (Series II: Mathematics, Physics and Chemistry), vol 140, Katrusiak, A. and McMillan, P., Eds., Dordrecht: Kluwer, 2004, p. 217.

  17. 17

    Sun, J.X., Wu, Q., Cai, L.C., et al., Phys. B (Amsterdam, Neth.), 2006, vol. 371, no. 2, p. 257.

  18. 18

    Molodets, A.M., Dokl. Phys., 1997, vol. 42, no. 4, p. 173.

    ADS  Google Scholar 

  19. 19

    Molodets, A.M., Khim. Fiz., 1997, vol. 16, no. 9, p. 132.

    Google Scholar 

  20. 20

    Khishchenko, K.V., Tech. Phys. Lett., 2004, vol. 30, no. 10, p. 829.

    ADS  Article  Google Scholar 

  21. 21

    Shemyakin, O.P., Levashov, P.R., and Khishchenko, K.V., Contrib. Plasma Phys., 2012, vol. 52, no. 1, p. 37.

    ADS  Article  Google Scholar 

  22. 22

    Kinelovskii, S.A. and Maevskii, K.K., High Temp., 2014, vol. 52, no. 6, p. 821.

    Article  Google Scholar 

  23. 23

    Khishchenko, K.V., J. Phys.: Conf. Ser., 2015, vol. 653, 012081.

    Google Scholar 

  24. 24

    Kraus, E.I. and Shabalin, I.I., J. Phys.: Conf. Ser., 2016, vol. 774, 012009.

    Google Scholar 

  25. 25

    Gilev, S.D., J. Phys. D: Appl. Phys., 2009, vol. 42, no. 2, 025501.

    ADS  Article  Google Scholar 

  26. 26

    Gilev, S.D., Combust., Explos. Shock Waves (Engl. Transl.), 2018, vol. 54, no. 4, p. 482.

  27. 27

    Vashchenko, V.Ya. and Zubarev, V.N., Fiz. Tverd. Tela, 1963, vol. 5, p. 886.

    Google Scholar 

  28. 28

    Bakanova, A.A., Dudoladov, I.P., and Trunin, R.F., Fiz. Tverd. Tela, 1965, vol. 7, no. 6, p. 1615.

    Google Scholar 

  29. 29

    Gschneidner, K.A., Solid State Phys., 1964, vol. 16, p. 275.

    Article  Google Scholar 

  30. 30

    Frantsevich, I.N., Voronov, S.S., and Bakuta, S.A., Uprugie postoyannye i moduli uprugosti metallov i nemetallov. Spravochnik (Elastic Constants and Elastic Moduli of Metals and Nonmetals: A Reference Book), Kiev: Naukova Dumka, 1982.

  31. 31

    Kittel, C., Introduction to Solid State Physics, New York: Wiley, 1953.

    Google Scholar 

  32. 32

    Perrot, F., Phys. A (Amsterdam, Neth.), 1979, vol. 98, no. 3, p. 555.

  33. 33

    Greene, R.G., Luo, H., and Ruoff, A.L., Phys. Rev. Lett., 1994, vol. 73, p. 2075.

    ADS  Article  Google Scholar 

  34. 34

    Dewaele, A., Loubeyre, P., and Mezouar, M., Phys. Rev. B: Condens. Matter Mater. Phys., 2004, vol. 70, 094112.

    ADS  Article  Google Scholar 

  35. 35

    Akahama, Y., Nishimura, M., Kinoshita, K., Kawamura, H., and Ohishi, Y., Phys. Rev. Lett., 2006, vol. 96, 045505.

    ADS  Article  Google Scholar 

  36. 36

    Nellis, W.J., Moriarty, J.A., Mitchell, A.C., et al., Phys. Rev. Lett., 1988, vol. 60, p. 1414.

    ADS  Article  Google Scholar 

  37. 37

    Zinov’ev, V.E., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh (Thermophysical Properties of Metals at High Temperatures), Moscow: Metallurgiya, 1989.

  38. 38

    Fizicheskie velichiny. Spravochnik (Physical Quantities: A Reference Book), Grigor’ev, I.S. and Meilikhov, E., Eds., Moscow: Energoatomizdat, 1991.

  39. 39

    Novikova, S.I., Teplovoe rasshirenie tverdykh tel (Thermal Expansion of Solids), Moscow: Nauka, 1974.

  40. 40

    Simmons, G. and Wang, H., Single Crystal Elastic Constants and Calculated Aggregate Properties, Cambridge: MIT Press, 2009.

    Google Scholar 

  41. 41

    Sjostrom, T., Crockett, S., and Rudin, S., Phys. Rev. B, 2016, vol. 94, no. 14, 144101.

    ADS  Article  Google Scholar 

  42. 42

    Levashov, P.R., Khishchenko, K.V., Lomonosov, I.V., and Fortov, V.E., AIP Conf. Proc., 2004, vol. 706, p. 87. http://www.ihed.ras.ru/rusbank/.

  43. 43

    Kalitkin, N.N. and Kuzmina, L.V., Wide-range characteristic thermodynamic curves, in Shock Waves and Extremal Conditions of Matter, Fortov, V.E., , Eds., New York: Springer, 2004, p. 109.

    Google Scholar 

  44. 44

    Vladimirov, A.S., Voloshin, N.P., Nogin, V.N., et al., Pis’ma Zh. Eksp. Teor. Fiz., 1984, vol. 39, no. 2, p. 69.

    Google Scholar 

  45. 45

    Simonenko, V.A., Voloshin, H.P., Vladimirov, A.S., et al., Zh. Eksp. Teor. Fiz., 1985, vol. 88, no. 4, p. 1452.

    ADS  Google Scholar 

  46. 46

    Bakanova, A.A., Dudoladov, I.P., Zhernokletov, M.V., Zubarev, V.N., and Simakov, G.V., J. Appl. Mech. Tech. Phys., 1983, vol. 24, no. 2, p. 204.

    ADS  Article  Google Scholar 

  47. 47

    Glushak, B.L., Zharkov, A.P., Zhernokletov, M.V., Ternovoi, V.Ya., Filimonov, A.S., and Fortov, V.E., Zh. Eksp. Teor. Fiz., 1989, vol. 96, no. 4, p. 1301.

    ADS  Google Scholar 

  48. 48

    Knudson, M.D., Desjarlais, M.P., and Pribram-Jones, A., Phys. Rev. B: Condens. Matter Mater. Phys., 2015, vol. 91, 224105.

    ADS  Article  Google Scholar 

  49. 49

    Al’tshuler, L.V., Kormer, S.B., Brazhnik, M.I., Vladimirov, L.A., Speranskaya, M.P., and Funtikov, A.I., Zh. Eksp. Teor. Fiz., 1960, vol. 38, p. 1061.

    Google Scholar 

  50. 50

    Neal, T., J. Appl. Phys., 1975, vol. 46, p. 2521.

    ADS  Article  Google Scholar 

  51. 51

    Mcqueen R.G., Fritz J.N., Morris C.E. The velocity of sound behind strong shock waves in 2024 Al, in Shock Waves in Condensed Matter 83, Asay, J.R., Graham, R.A., and Straub, G.K., Eds., Amerstdam: North Holland, 1984, p. 95.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. D. Gilev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gilev, S.D. Low-Parametric Equation of State of Aluminum. High Temp 58, 166–172 (2020). https://doi.org/10.1134/S0018151X20020078

Download citation