Skip to main content
Log in

Thermomechanical Ablation of Titanium by Femtosecond Laser Irradiation

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

Interference microscopy was used to study the ablation of a titanium target with a single exposure to laser pulses of 40 fs. The threshold of thermomechanical ablation is measured by the absorbed energy density and the dependence of the crater depth on the energy density of the laser pulse. The results of the study of the morphology and nanorelief of the crater surfaces indicate that the destruction of the surface layer in the condensed state has a spalling nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Anisimov, S.I. and Luk’yanchuk, B.S., Phys.—Usp., 2002, vol. 45, no. 3, p. 293.

    Article  Google Scholar 

  2. Sokolowski-Tinten, K., Bialkowski, J., Cavalleri, A., Von der Linde, D., Oparin, A., Meyer-ter-Vehn, J., and Anisimov, S.I., Phys. Rev. Lett., 1998, vol. 81, p. 224.

    Article  ADS  Google Scholar 

  3. Ivanov, D.S. and Zhigilei, L.V., Phys. Rev. B: Condens. Matter Mater. Phys., 2003, vol. 68, 064114.

    Article  ADS  Google Scholar 

  4. Bulgakova, N.M., Stoian, R., Rosenfeld, A., Hertel, I.V., and Campbell, E.B., Phys. Rev. B: Condens. Matter Mater. Phys., 2004, vol. 69, 054102.

    Article  ADS  Google Scholar 

  5. Agranat, M.B., Anisimov, S.I., Ashitkov, S.I., Zhakhovskii, V.V., Inogamov, N.A., Nishihara, K., Petrov, Yu.V., Khokhlov, V.A., and Fortov, V.E., Appl. Surf. Sci., 2007, vol. 253, no. Iss. 15, p. 6276.

  6. Povarnitsyn, M.E., Itina, T.E., Sentis, M., Khishchenko, K.V., and Levashov, P.R., Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 75, no. 23, 235414.

    Article  ADS  Google Scholar 

  7. Inogamov, N.A., Zhakhovskii, V.V., Ashitkov, S.I., Petrov, Yu.V., Agranat, M.B., Anisimov, S.I., Nishikhara, K., and Fortov, V.E., J. Exp. Tech. Phys., 2008, vol. 134, no. 1, p. 1.

    ADS  Google Scholar 

  8. Zhao, X. and Shin, Y.C., Appl. Surf. Sci., 2013, vol. 283, p. 94.

    Article  ADS  Google Scholar 

  9. Ashitkov S.I., Inogamov, N.A., Zhakhovskii, V.V., Emirov, Yu.N., Agranat, M.B., Oleinik, I.I., Anisimov, S.I., and Fortov, V.E., JETP Lett., 2012, vol. 95, no. 4, p. 176.

    Article  ADS  Google Scholar 

  10. Vorobyev, A.Y. and Guo, C., Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, 195422.

    Article  ADS  Google Scholar 

  11. Romashevskiy, S.A., Agranat, M.B., and Dmitriev, A.S., High Temp., 2016, vol. 54, no. 3, p. 461.

    Article  Google Scholar 

  12. Ashitkov, S.I., Komarov, P.S., Struleva, E.V., Inogamov, N.A., Agranat, M.B., Kanel, G.I., and Khishchenko, K.V., J. Phys.: Conf. Ser., 2015, vol. 653, 012001.

    Google Scholar 

  13. Ashitkov, S.I., Komarov, P.S., Ovchinnikov, A.V., Struleva, E.V., and Agranat, M.B., JETP Lett., 2016, vol. 103, no. 8, p. 544.

    Article  ADS  Google Scholar 

  14. Ashitkov, S.I., Komarov, P.S., Ovchinnikov, A.V., Struleva, E.V., Zhakhovskii, V.V., Inogamov, N.A., and Agranat, M.B., Quantum Electron., 2014, vol. 44, no. 6, p. 535.

    Article  ADS  Google Scholar 

  15. Ashitkov, S.I., Komarov, P.S., Struleva, E.V., Inogamov, N.A., and Agranat, M.B., J. Phys.: Conf. Ser., 2018, vol. 946, 012002.

    Google Scholar 

  16. Struleva, E.V., Komarov, P.S., and Ashitkov, S.I., High Temp., 2018, vol. 56, no. 5, p. 648.

    Article  Google Scholar 

  17. Artyukov, I.A., Zayarnyi, D.A., Ionin, A.A., Kudryashov, S.I., Makarov, S.V., and Saltuganov, P.N., JETP Lett., 2014, vol. 99, no. 1, p. 51.

    Article  ADS  Google Scholar 

  18. Temnov, V.V., Sokolowski-Tinten, K., Zhou, P., and Von der Linde, D., J. Opt. Soc. Am. B, 2006, vol. 23, no. 9, p. 1954.

  19. Liu, J.M., Opt. Lett., 1982, vol. 7, no. 5, p. 196.

    Article  ADS  Google Scholar 

  20. Werner, W.S.M., Glantschnig, K., and Ambrosch-Drax, C.L., J. Phys. Chem. Ref. Data, 2009, vol. 38, no. 4, p. 1013.

    Article  ADS  Google Scholar 

  21. Zinov’ev, V.E., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh. Spravochnoe izdanie (Thermophysical Properties of Metals at High Temperatures: A Reference Book), Moscow: Metallurgiya, 1989.

  22. Kikoin, I.K., Tablitsa fizicheskikh velichin. Spravochnik (Table of Physical Quantities: A Reference Book), Moscow: Atomizdat, 1976.

Download references

Funding

The study was supported by Russian Foundation for Basic Research, project no. 18-38-00662.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Struleva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Struleva, E.V., Komarov, P.S. & Ashitkov, S.I. Thermomechanical Ablation of Titanium by Femtosecond Laser Irradiation. High Temp 57, 486–489 (2019). https://doi.org/10.1134/S0018151X19040217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19040217

Navigation