Skip to main content
Log in

Liquid–Vapor Phase Transitions and Critical Properties of the C3H7OH–C6H14 System

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

Proceeding from the experimental (p,T,x) and (p,ρ,T,x) dependences for mixtures of 1-propanol and n-hexane (mole fractions 0.2, 0.5, 0.8, and 0.9) in the two-phase (liquid–vapor), single-phase (liquid and vapor), near-critical, and supercritical regions, the parameters of the points of liquid–vapor phase transformations have been determined by the method of isochore kinks p = f(T)ρ,x and the parameters of the critical points have been found by the semigraphical method with allowance for the scaling behavior. The dependences of the pressure on temperature, density, and composition along the phase-coexistence curve are described by a three-parameter polynomial equation of state: expansion of the compressibility factor Z = p/RTρ in powers of the reduced density, reduced temperature, and composition. The mean relative error of deviation of the calculated pressures from experimental values does not exceed 1%. The temperature dependence of the system density along the liquid–vapor phase-coexistence curve is described by two power-law functions at critical exponent β0 = 0.338 ± 0.002: far from the critical point and in the symmetric part of the equilibrium curve. The mean relative error is 1.47%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Stanley, H.E., Introduction to Phase Transitions and Critical Phenomena, Oxford: Oxford Univ. Press, 1971.

    Google Scholar 

  2. Potashinskii, A.Z. and Pokrovskii, V.L., Fluktuatsionnaya teoriya fazovykh perekhodov (The Fluctuation Theory of Phase Transitions), Moscow: Nauka, 1982, 2nd ed.

  3. Anisimov, M.A., Kriticheskie yavleniya v zhidkostyakh i zhidkikh kristallakh (Critical Phenomena in Liquids and Liquid Crystals), Moscow: Nauka, 1987.

  4. Kirillin, V.A., and Sheindlin, A.E., Issledovanie termodinamicheskikh svoistv veshchestv (Study of Thermodynamic Properties of Substances), Moscow: Gosenergoizdat, 1963.

  5. Durov, V.A. and Ageev, E.P., Termodinamicheskaya teoriya rastvorov (Thermodynamic Theory of Solutions), Moscow: URSS, 2003, 2nd ed.

  6. Smirnova, N.A., Molekulyarnye teorii rastvorov (Molecular Theories of Solutions), Leningrad: Khimiya, 1987.

  7. Gumerov, F.M., Sabirzyanov, A.N., and Gumerova, G.I., Sub- i sverkhkriticheskie flyuidy v protsessakh pererabotki polimerov (Subcritical and Supercritical Fluids in Polymer Processing), Kazan: FEN, 2007.

  8. Zaleputin, D.Yu., Til’kunova, N.A., Chernysheva, I.V., and Polyakov, V.S., Sverkhkrit. Flyuidy: Teor. Prakt., 2006, vol. 1, no. 1, p. 27.

    Google Scholar 

  9. Vasil’ev, V.A., Krainov, A.V., and Gevorkov, I.G., Therm. Eng., 1996, vol. 43, no. 5, p. 385.

    Google Scholar 

  10. Novikov, I.I., Dokl. Akad. Nauk SSSR, 1994, vol. 335, no. 3, p. 308.

    Google Scholar 

  11. NIST Chemistry WebBook. http://webbook.nist.gov/ chemistry/fluid/

  12. Abdulagatov, I.M., Bazaev, E.A., Bazev, A.R., and Rabezkii, M.G., J. Supercrit. Fluids, 2001, vol. 19, no. 3, p. 219.

    Article  Google Scholar 

  13. Bazaev, E.A. and Bazaev, A.R., High Temp., 2013, vol. 51, no. 2, p. 224.

    Article  Google Scholar 

  14. Rasulov, S.M. and Rasulov, A.R., High Temp., 2005, vol. 43, no. 1, p. 45.

    Google Scholar 

  15. Abdulagatov, I.M., Bazaev, A.R., Bazaev, E.A., and Dzhapparov, T.A., J. Supercrit. Fluids, 2016, no. 117, p. 172.

  16. Brunner, E., J. Chem. Thermodyn., 1990, vol. 22, p. 335.

    Article  Google Scholar 

  17. De Loos, Th.W., Penders, W.G., and Lichtenthaler, R.N., J. Chem. Thermodyn., 1982, vol. 14, p. 83.

    Article  Google Scholar 

  18. Basok, B.I., Cand. Sci. (Phys–Math.) Dissertation, Kiev: Kiev State Univ., 1985.

  19. Nazmutdinov, A.G., Alekina, E.V., and Nesterova, T.N., Russ. J. Phys. Chem. A, 2008, vol. 82, no. 11, p. 1857.

    Article  Google Scholar 

  20. Morton, D.W., Lui, M.P.W., and Young, C.L., J. Chem. Thermodyn., 2003, vol. 35, no. 11, p. 1737.

    Article  Google Scholar 

  21. Seungho Jung, Moon Sam Shin, and Hwayong Kim, J. Chem. Eng. Data, 2006, vol. 51, no. 2, p. 656.

    Article  Google Scholar 

  22. Singh, K.C., Kalra, K.C., Maken, S., and Yadav, B.L., J. Chem. Eng. Data, 1994, vol. 39, no. 2, p. 241.

    Article  Google Scholar 

  23. Byung Chul Oh, Youngdae Kim, Hun Yong Shin, and Hwayong Kim, Fluid Phase Equilib., 2004, vol. 220, no. 1, p. 41.

    Article  Google Scholar 

  24. Singh, K.C., Kalra, K.C., Maken, S., and Gupta, V., Thermochim. Acta, 1996, vol. 276, p. 271.

    Article  Google Scholar 

  25. Singh, K.C., Kalra, K.C., Maken, S., and Gupta, V., Fluid Phase Equilib., 1996, vol. 119, nos. 1–2, p. 175.

    Article  Google Scholar 

  26. Chao, J.P. and Dai, M., Thermochim. Acta, 1988, vol. 123, p. 285.

    Article  Google Scholar 

  27. Bazaev, E.A. and Bazaev, A.R., Sverkhkrit. Flyuidy: Teor. Prakt., 2010, vol. 5, no. 3, p. 15.

    Google Scholar 

  28. Bazaev, E.A., Bazaev, A.R., and Dzhapparov, T.A., Vestn. Kazan. Gos. Tekhnol. Univ., 2010, no. 1, p. 242.

  29. Abdulagatov, I.M., Bazaev, A.R., Bazaev, E.A., and Dzhapparov, T.A., J. Mol. Liq., 2017, vol. 239, p. 14.

    Article  Google Scholar 

  30. Alhasov, A.B., Bazaev, A.R., Bazaev, E.A., and Osmanova, B.K., J. Phys.: Conf. Ser., 2017, vol. 891, 012327.

    Google Scholar 

  31. Bazaev, E.A., Bazaev, A.R., and Abdurashidova, A.A., High Temp., 2004, vol. 42, no. 6, p. 895.

    Article  Google Scholar 

  32. Bazaev, E.A., Bazaev, A.R., and Abdurashidova, A.A., High Temp., 2009, vol. 47, no. 2, p. 195.

    Article  Google Scholar 

  33. Xin, N., Liu, Y., Guo, X., Liu, X., Zhang, Y., and He, M., J. Supercrit. Fluids, 2016, vol. 108, p. 35.

    Article  Google Scholar 

  34. Hicks, C.P. and Young, C.L., Chem. Rev., 1975, vol. 75, p. 119.

    Article  Google Scholar 

  35. Gil, L., Blanco, S.T., Rivas, C., Laga, E., Fernández, J., Artal, M., and Velasco, I., J. Supercrit. Fluids, 2012, vol. 71, p. 26.

    Article  Google Scholar 

  36. Oh, B.C., Kim, Y., Shin, H.Y., and Kim, H., Fluid Phase Equilib., 2004, vol. 220, no. 1, p. 41.

    Article  Google Scholar 

  37. Sychev, V.V., Vasserman, A.A., Kozlov, A.D., et al., Termodinamicheskie svoistva azota (Thermodynamic Properties of Nitrogen), Moscow: Izd. Standartov, 1977.

  38. Vukalovich, M.P., Altunin, V.V., and Spiridonov, G.A., Teplofiz. Vys. Temp., 1967, vol. 5, no. 2, p. 265.

    Google Scholar 

  39. Shimanskaya, E.T., Oleinikova, A.V., and Shimanskii, Yu.I., Fiz. Nizk. Temp., 1990, vol. 16, no. 11, p. 1377.

    Google Scholar 

  40. Shimanskaya, E.T., Shimanskii, Yu.I., and Oleinikova, A.V., Zh. Fiz. Khim., 1992, vol. 66, no. 4, p. 1054.

    Google Scholar 

  41. Alekhin, A.D., J. Mol. Liq., 2005, vol. 120, p. 43.

    Article  Google Scholar 

  42. Sheludyak, Yu.E. and Rabinovich, V.A., Teplofiz. Vys. Temp., 1993, vol. 31, no. 6, p. 915.

    Google Scholar 

  43. Shimanskii, Yu.I. and Shimanskaya, E.T., Russ. J. Phys. Chem. A, 1996, vol. 70, no. 3, p. 406.

    Google Scholar 

Download references

FUNDING

This study was supported by the Russian Foundation for Basic Research, project no. 18-08-00124 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Bazaev.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazaev, E.A., Bazaev, A.R. Liquid–Vapor Phase Transitions and Critical Properties of the C3H7OH–C6H14 System. High Temp 57, 355–360 (2019). https://doi.org/10.1134/S0018151X19030027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X19030027

Navigation