Skip to main content
Log in

Thermodynamic Parameters of Mixtures with Silicon Nitride Under Shock-Wave Impact in Terms of Equilibrium Model

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

The results of numerical experiments on the modeling of the thermodynamic parameters of the shock-wave loading of silicon nitride Si3N4 and mixtures based on it are presented. A thermodynamically equilibrium model is used to account for the phase transition of Si3N4 during the shock-wave impact. The thermodynamic parameters of shock-wave loading are described for pure silicon nitride, as well as for mixtures of Si3N4 with potassium bromide KBr, periclase MgO, and aluminum nitride AlN. The computation results are compared with experimental data obtained by different authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kinelovskii, S.A. and Maevskii, K.K., J. Appl. Mech. Tech. Phys., 2013, vol. 54, no. 4, p. 524.

    Article  ADS  Google Scholar 

  2. Kinelovskii, S.A. and Maevskii, K.K., High Temp., 2014, vol. 52, no. 6, p. 821.

    Article  Google Scholar 

  3. Kinelovskii, S.A. and Maevskii, K.K., High Temp., 2016, vol. 54, no. 5, p. 675.

    Article  Google Scholar 

  4. Kinelovskii, S.A. and Maevskii, K.K., Tech. Phys., 2016, vol. 61, no. 8, p. 1244.

    Article  Google Scholar 

  5. Yamakawa, A., J. Ceram. Soc. Jpn., 1993, vol. 101, no. 12, p. 1358.

    Article  Google Scholar 

  6. Bakanova, A.A., Bugaeva, V.A., Dudoladov, I.P., and Trunin, R.F., Izv. Akad. Nauk SSSR, Fiz. Zemli, 1995, no. 6, p. 58.

  7. Sekine, T., He, H., Kobayashi, T., Zhang, M., and Xu, F., Appl. Phys. Lett., 2000, vol. 76, no. 25, p. 3706.

    Article  ADS  Google Scholar 

  8. He, H., Sekine, T., Kobayashi, T., and Hirosaki, H., Phys. Rev. B: Condens. Matter Mater. Phys., 2000, vol. 62, no. 17, p. 11412.

    Article  ADS  Google Scholar 

  9. Sekine, T., J. Am. Ceram. Soc., 2002, vol. 85, no. 1, p. 113.

    Article  Google Scholar 

  10. Yakushev, V.V., Utkin, A.V., Zhukov, A.N., Shakhrai, D.V., and Kim, V.V., High Temp., 2016, vol. 54, no. 2, p. 197.

    Article  Google Scholar 

  11. Mashimo, T., Uchino, M., and Nakamurac, A., J. Appl. Phys., 1999, vol. 86, no. 12, p. 6710.

    Article  ADS  Google Scholar 

  12. Gömze, L.A. and Gömze, L.N., IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 175, 012001.

  13. Yunoshev, A.S., Combust., Explos. Shock Waves (Engl. Transl.), 2004, vol. 40, no. 3, p. 370.

  14. Zhukov, A.N., Zakiev, S.E., and Yakushev, V.V., High Temp., 2016, vol. 54, no. 1, p. 62.

    Article  Google Scholar 

  15. Lomonosov, I.V. and Fortova, S.V., High Temp., 2017, vol. 55, no. 4, p. 585.

    Article  Google Scholar 

  16. Lomonosov, I.V., Fortov, V.E., Frolova, A.A., Khishchenko, K.V., Charakhch’yan, A.A., and Shurshalov, L.V., High Temp., 2003, vol. 41, no. 4, p. 447.

    Article  Google Scholar 

  17. Charakhch’yan, A.A., Milyavskii, V.V., and Khishchenko, K.V., High Temp., 2009, vol. 47, no. 2, p. 235.

    Article  Google Scholar 

  18. Khishchenko, K.V., Charakhch’yan, A.A., Fortov, V.E., Frolova, A.A., Milyavskiy, V.V., and Shurshalov, L.V., J. Appl. Phys., 2011, vol. 110, no. 5, 053501.

    Article  ADS  Google Scholar 

  19. Bourasseau, E., Pineau, N., Maillet, J.-B., and Dubois, V., Carbon, 2016, vol. 103, p. 464.

    Article  Google Scholar 

  20. Kinelovskii, S.A., Kul’kov, S.N., and Maevskii, K.K., Vestn. Novosib. Gos. Univ., Ser. Fiz., 2011, vol. 6, no. 3, p. 40.

    Google Scholar 

  21. Maevskii, K.K. and Kinelovskii, S.A., AIP Conf. Proc., 2014, vol. 1623, p. 391.

    Article  Google Scholar 

  22. Trunin, R.F., Issledovaniya ekstremal’nykh sostoyanii kondensirovannykh veshchestv metodom udarnykh voln. Uravneniya Gyugonio (Studies of Extreme States of Condensed Matter by the Shock Wave Method: The Hugoniot Equations), Sarov: Ross. Fed. Yad. Tsentr, 2006.

    Google Scholar 

  23. Kanel’, G.I., Bezruchko, G.S., Savinykh, A.S., Razorenov, S.V., Milyavskii, V.V., and Khishchenko, K.V., High Temp., 2010, vol. 48, no. 6, p. 806.

    Article  Google Scholar 

  24. Yakushev, V.V., Zhukov, A.N., Utkin, A.V., Rogacheva, A.I., and Kudakina, V.A., Combust., Explos. Shock Waves (Engl. Transl.), 2015, vol. 51, no. 5, p. 603.

  25. LASL Shock Hugoniot Data, Marsh, S.P., Ed., Berkeley: Univ. California Press, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Maevskii.

Additional information

Translated by K. Gumerov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maevskii, K.K., Kinelovskii, S.A. Thermodynamic Parameters of Mixtures with Silicon Nitride Under Shock-Wave Impact in Terms of Equilibrium Model. High Temp 56, 853–858 (2018). https://doi.org/10.1134/S0018151X18060172

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18060172

Navigation