Skip to main content
Log in

Efficiency of Steam Generation in a Hydrogen-Oxygen Steam Generator of Kilowatt-Power Class

  • HIGH TEMPERATURE APPARATUSES AND STRUCTURES
  • Published:
High Temperature Aims and scope

Abstract

The article presents the results of experimental studies and optimization of the processes of mixture formation, combustion, and steam generation in a kilowatt power–class, experimental, hydrogen-oxygen steam generator. The optimal design of the mixturing element and the combustion chamber for their failsafe operation and minimal hydrogen content in the generated steam is determined. The influence of the pressure in the evaporation chamber and of the generated steam temperature on the completeness of hydrogen combustion is studied. The results of multiregime tests of the hydrogen-oxygen steam generator at a power of up to 200 kW are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. Shpil’rain, E.E. and Malyshenko, S.P., Teploenergetika, 1980, no. 3, p. 8.

  2. Malyshenko, S.L., Nazarova, O.B., and Sarumov, Yu.A., Teploenergetika, 1986, no. 10, p. 43.

  3. Gorlov, A.M., Int. J. Hydrogen Energy, 1981, vol. 6, no. 3, p. 243.

    Article  ADS  Google Scholar 

  4. Sternfeld, H.J. and Heinrich, P., Int. J. Hydrogen Energy, 1989, vol. 14, no. 10, p. 703.

    Article  Google Scholar 

  5. Bebelin, I.N., Volkov, A.G., Gryaznov, A.N., and Malyshenko, S.P., Teploenergetika, 1997, no. 8, p. 48.

  6. Haidn, O.J., Fröhlke, K., Carl, J., and Weingartner, S., Int. J. Hydrogen Energy, 1998, vol. 23, no. 6, p. 491.

    Article  Google Scholar 

  7. Hijikata, T., Int. J. Hydrogen Energy, 2002, vol. 27, no. 2, p. 115.

    Article  Google Scholar 

  8. Malyshenko, S.P., Gryaznov, A.N., and Filatov, N.I., Int. J. Hydrogen Energy, 2004, vol. 29, no. 6, p. 589.

    Article  Google Scholar 

  9. Shapiro, V.I., Malyshenko, S.P., and Reutov, B.F., Therm. Eng., 2011, vol. 58, no. 9, p. 741.

    Article  ADS  Google Scholar 

  10. Malyshenko, S.P. and Schastlivtsev, A.I., High Temp., 2015, vol. 53, no. 4, p. 509.

    Article  Google Scholar 

  11. Cicconardi, S.P., Perna, A., and Spazzafumo, G., Int. J. Hydrogen Energy, 2004, vol. 29, no. 5, p. 547.

    Article  Google Scholar 

  12. Fröhlke, K. and Haidn, O.J., Energy Convers. Manage., 1997, vol. 38, no. 10, p. 983.

    Article  Google Scholar 

  13. Schastlivtsev, A.I. and Nazarova, O.V., Therm. Eng., 2016, vol.63, no. 2, p. 107.

    Article  ADS  Google Scholar 

  14. Malyshenko, S.P. and Schastlivtsev, A.I., Therm. Eng., 2010, vol. 57, no. 11, p. 931.

    Article  ADS  Google Scholar 

  15. Sternfeld, H.J. and Paulus, M., Int. J. Hydrogen Energy, 1993, vol. 18, no. 11, p. 945.

    Article  Google Scholar 

  16. Betelin, V.B., Shagaliev, R.M., Aksenov, S.V., et al., Acta Astronaut., 2014, no. 96, p. 53.

  17. Smirnov, N.N. and Nikitin, V.F., Int. J. Hydrogen Energy, 2014, vol. 39, no. 2, p. 1122.

    Article  Google Scholar 

  18. Jin, P., Li, M., and Cai, G., Chin. J. Aeronaut., 2013, vol. 26, no. 5, p. 1164.

    Article  Google Scholar 

  19. Lux, J., Suslov, D., and Haidn, O., Aerosp. Sci. Technol., 2008, vol. 12, no. 6, p. 469.

    Article  Google Scholar 

  20. Hashimoto, T., Koyama, K., and Yamagishi, M., Int. J. Hydrogen Energy, 1998, vol. 23, no. 8, p. 713.

    Article  Google Scholar 

  21. Malyshenko, S.P., Prigozhin, V.I., Savich, A.R., Schastlivtsev, A.I., Il’ichev, V.A., and Nazarova, O.V., High Temp., 2012, vol. 50, no. 6, p. 765.

    Article  Google Scholar 

  22. Frolov, S.M., Aksenov, V.S., and Ivanov, V.S., Int. J. Hydrogen Energy, 2015, vol. 40, no. 21, p. 6970.

    Article  Google Scholar 

  23. Sohn, C.H., Chung, S.H., Lee, S.R., and Kim, J.S., Combust. Flame, 1998, vol. 115, no. 3, p. 299.

    Article  Google Scholar 

  24. Blair, L.S. and Getzinger, R.W., Combust. Flame, 1970, vol. 14, no. 1, p. 5.

    Article  Google Scholar 

  25. Lédé, J., Lapicque, F., and Villermaux, J., Int. J. Hydrogen Energy, 1983, vol. 8, no. 9, p. 675.

    Article  ADS  Google Scholar 

  26. Il’ichev, V.A., Prigozhin, V.I., Savich, A.R., Sviridov, O.P., Malyshenko, S.P., Nazarova, O.V., and Schastlivtsev, A.I., Tepl. Protsessy Tekh., 2011, no. 11, p. 517.

  27. Dobrovol’skii, M.V., Zhidkostnye raketnye dvigateli. Osnovy proektirovaniya. Uchebnik dlya vuzov (Liquid Rocket Engines. Fundamentals of Design: Textbook for High Schools) Yagodnikov, D.A., Ed., Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2005.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work is supported by the Russian Science Foundation, agreement no. 14-50-00124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Borzenko.

Additional information

Translated by I. Dikhter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzenko, V.I., Schastlivtsev, A.I. Efficiency of Steam Generation in a Hydrogen-Oxygen Steam Generator of Kilowatt-Power Class. High Temp 56, 927–932 (2018). https://doi.org/10.1134/S0018151X1806007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X1806007X

Navigation