Skip to main content
Log in

Modeling of Heat Mass Transfer in High-Temperature Reacting Flows with Combustion

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

A multiprocessor computer system suitable for physical, mathematical, and chemical models, as well as an exact method for the solution of a system of differential equations that describe the actual combustion of a pulverized coal flare, are necessary to study the numerically complex, physicochemical processes occurring in the combustion chambers of power plants. The results of numerical simulation can provide quite a high accuracy. However, the task of setting up a physical and mathematical model with the correct initial and boundary conditions has yet to be completed. In this paper, we studied heat and mass transfer in high-temperature reacting flows during the burning of Karaganda coal in the combustion chamber of an actual power boiler of a thermal power plant in Kazakhstan. The optimal conditions for computational experiments that correspond to real combustion processes are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Vockrodt, S., Leithner, R., Schiller, A., et al., in Proc. 19th German Conf. on Flames, Combustion and Incineration, Berlin: VDI-Berichte, 1999, vol. 1492, p. 93.

    Google Scholar 

  2. Messerle, V.E., Ustimenko, A.B., Bolegenova, S.A., et al., Thermophys. Aeromech., 2016, vol. 23, p. 125.

    Article  ADS  Google Scholar 

  3. Bekmukhamet, A., Beketayeva, M., Gabitova, Z., et al., J. Appl. Fluid Mech., 2016, vol. 9, no. 2, p. 699.

    Article  Google Scholar 

  4. Askarova, A.S., Bolegenova, S.A., Maksimov, V.Yu., Bekmukhamet, A., Beketaeva, M.T., and Gabitova, Z.Kh., High Temp., 2015, vol. 53, no. 5, p. 751.

    Article  Google Scholar 

  5. Heierle, E., Manatbayev, R., Yergaliyeva, A., et al., Bulg. Chem. Commun., 2016, vol. 48, p. 260.

    Google Scholar 

  6. Bolegenova, S. Maximov, V., et al., IERI Procedia, 2014, vol. 10, p. 252.

    Article  Google Scholar 

  7. Gorokhovski, M., Chtab-Desportes, A., Voloshina, I., and Askarova, A., in AIP Conf. Proc., Xi’an, 2010, vol. 1207, p. 66.

  8. Zarubin, V.S., Kuvyrkin, G.N., and Savel’eva, I.Yu., High Temp., 2016, vol. 54, no. 6, p. 831.

    Article  Google Scholar 

  9. Askarova, A., Bolegenova, S., Bolegenova, S., Bekmukhamet, A., Maximov, V., and Beketayeva, M., Int. J. Mech., 2013, vol. 7, p. 343.

    Google Scholar 

  10. Askarova, A., Messerle, V., Ustimenko, A., et al., Thermophys. Aeromech., 2014, vol. 21, p. 747.

    Article  ADS  Google Scholar 

  11. Kudinov, I.V., Kudinov, V.A., and Kotova, E.V., High Temp., 2017, vol. 55, no. 4, p. 541.

    Article  Google Scholar 

  12. Leithner, R., Nugymanova, A., Beketayeva, M., et al., in Proc. MATEC Web of Conf. CSCC, 2016, p. 5.

  13. Askarowa, A.S., Karpenko, E.I., Messerle, V.E., and Ustimenko, A., J. High Energy Chem., 2006, vol. 40, p. 111.

    Article  Google Scholar 

  14. Askarowa, A. and Buchmann, M., in Proc. 18th Dutch–German Conf. on Flames: Gesell Energietech “Combustion and Incineration,” Berlin: VDI Berichte, 1997, p. 241.

  15. Beketayeva, M.T., Maximov, Yu.V., Ospanova, Sh.S., and Gabitova, Z.K., Int. J. Mech., 2014, vol. 8, p. 112.

    Google Scholar 

  16. Glarborg, P., Jensen, A.D., and Johnsson, J.E., Prog. Energy Combust. Sci., 2003, vol. 29, p. 89.

    Article  Google Scholar 

  17. Warnatz, J., Maas, U., and Dibble, R.W., Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, Berlin: Springer, 2001.

    Book  MATH  Google Scholar 

  18. Beketayeva, M., Ospanova, Sh., Gabitova, Z.K., et al., WSEAS Trans. Heat Mass Transfer, 2014, vol. 9, p. 39.

    Google Scholar 

  19. Karpenko, E.I., Karpenko, Yu.E., Messerle, V.E., et al., in Proc. 7th Int. Fall Seminar on Propellants “Explosives and Pyrotechnics,” Xi’an, 2007, p. 672.

  20. Askarova, A., Bolegenova, S., Bolegenova, S., et al., Int. J. Mech., 2016, vol. 10, p. 320.

    Google Scholar 

  21. Askarova, A.S., Bolegenova, S.A., Bekmuhamet, A., and Maximov, V.Yu., Procedia Eng., 2012, vol. 42, p. 1259.

    Google Scholar 

  22. Gidaspov, V.Yu. and Severina, N.S., High Temp., 2017, vol. 55, no. 5, p. 777.

    Article  Google Scholar 

  23. Patankar, S., Numerical Heat Transfer and Fluid Flow, New York: Hemisphere, 1980.

    Book  MATH  Google Scholar 

  24. Askarova, A.S., Lavrichsheva, Ye., Leithner, R., Müller, H., and Magda, A., Combustion of Low-Rank Coals in Furnaces of Kazakhstan Coal-firing Power Plants, Berlin: VDI Berichte, 2007.

    Google Scholar 

  25. Heierle, Ye., Leithner, R., Muller, H., and Askarova, A., WSEAS Trans. Heat Mass Transfer, 2009, vol. 4, no. 4, p. 98.

    Google Scholar 

  26. Lockwood, F. and Shah, N., in ASME–AIChE Heat Transfer Conf., Salt Lake City, 1976, p. 2.

  27. Leithner, R., Numerical Simulation. Computational Fluid Dynamics CFD: Course of Lecture, Braunschweig, 2006.

  28. Askarova, A.S., Messerle, V.E., Ustimenko, A.B., Bolegenova, S.A., Maksimov, V.Yu., and Gabitova, Z.Kh., High Temp., 2015, vol. 53, no. 3, p. 445.

    Article  Google Scholar 

  29. Askarova, A., Bolegenova, S., Bekmukhamet, A., Ospanova, Sh., and Gabitova, Z., J. Eng. Appl. Sci., 2014, vol. 9, no. 1, p. 24.

    Google Scholar 

  30. Askarova, A.S., Bolegenova, S.A., Maksimov, V.Y., Bekmuhamet, A., and Ospanova, S.S., Procedia Eng., 2012, vol. 42, p. 1250.

    Article  Google Scholar 

  31. Ovchinnikov, V.A. and Yakimov, A.S., High Temp., 2017, vol. 55, no. 5, p. 782.

    Article  Google Scholar 

  32. Aliyarov, B.K. and Aliyarova, M.B., Szhiganie kazakhstanskikh uglei na TES i na krupnykh kotel’nykh: opyt i perspektivy (Combustion of Kazakhstani Coal at TPPs and Large Boiler Plants: Experience and Prospects), Almaty, 2014.

  33. Teplovoi raschet kotlov: normativnyi metod (Thermal Calculation of Boilers: Standard Method), St. Petersburg: Nauchn.-Proivodst. Ob”ed. Issled. Proektir. Tepl. Oborud., 1998.

Download references

ACKNOWLEDGMENTS

This work was supported by the Education and Science Ministry, Kazakhstan, project no. AP05133590.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Beketayeva.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askarova, A.S., Bolegenova, S.A., Bolegenova, S.A. et al. Modeling of Heat Mass Transfer in High-Temperature Reacting Flows with Combustion. High Temp 56, 738–743 (2018). https://doi.org/10.1134/S0018151X1805005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X1805005X

Keywords

Navigation