Skip to main content
Log in

Recombination Waves in Dusty Plasma of a Non-Self-Sustained Discharge

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

The steady-state, spatially periodic, structures generated by the evolution of the nonlinear stage of recombination instability in dusty plasma of a non-self-sustained discharge are studied. The research has revealed two types of structures typical for this kind of discharge; they differ in the rates of the increment of recombination instability. The features of each type of structure are described, and the mechanism of their formation is presented. It is shown that the calculation results qualitatively and, with a small variation of discharge parameters, quantitatively agree with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Kroesen, G.M.W., Dusty plasmas: Industrial applications, in Advances in Dusty Plasmas, Shukla, P.K., Mendis, D.A., and Desai, T., Eds., Singapore: World Scientific, 1997.

    Google Scholar 

  2. Goertz, C.K., Rev. Geophys., 1989, vol. 27, no. 1, p. 271.

    Article  ADS  Google Scholar 

  3. Klumov, B.A., Vladimirov, S.V., and Morfill, G.E., JETP Lett., 2005, vol. 82, no. 10, p. 632.

    Article  ADS  Google Scholar 

  4. Fortov, V.E. and Morfill, G.E., Complex and Dusty Plasmas: From Laboratory to Space, Boca Raton: CRC, 2010.

    Google Scholar 

  5. Complex, Plasmas: Scientific Challenges and Technological Opportunities, Bonitz, M., Lopez, J., Becker, K.H., and Thomsen, H., Eds., Ser. Atomic, Optical, and Plasma Physics, Berlin: Springer, 2014, vol. 82.

  6. Abul, K., Anuar. A Study of Dusty Plasma Environment, PhD Thesis, Lancaster: Lancaster Univ., 2013.

  7. Stolarz, A., J. Radioanal. Nucl. Chem., 2014, vol. 299, no. 2, p. 913.

    Article  Google Scholar 

  8. Pulsed Metal Vapour Lasers: Proc. NATO Advanced Research Workshop on Pulsed Metal Vapour Lasers – Physics and Emerging Applications in Industry, Medicine and Science, Little, C.E. and Sabotinov, N.V., Eds., London: Kluwer, 1996.

    Google Scholar 

  9. Creel, J., Carmona-Reyes, J., Kong, J., and Hyde, T.W., Particulate contamination within fusion devices and complex (dusty) plasmas, in IEEE Int. Conf. on Plasma Science, 2007, p. 618.

  10. Filippov, A.V., Photovoltaic energy source based on ordered plasma-dust structures, in Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma), Ser. A: Progress v fizike i tekhnike nizkotemperaturnoi plazmy (Progress in Physics and Technology of Low-Temperature Plasma), vol. I-2: Pylevaya plazma (Dusty Plasma), Fortov, V.E., Ed., Moscow: Yanus-K, 2006.

  11. Fortov, V.E., Rykov, V.A., Budnik, A.P., Filinov, V.S., Deputatova, L.V., Rykov, K.V., Vladimirov, V.I., Molotkov, V.I., Zrodnikov, A.V., and Dyachenko, P.P., Phys. Lett. A, 2006, vol. 351, p. 296.

    Article  ADS  Google Scholar 

  12. Deputatova, L.V., Vladimirov, V.I., Filinov, V.S., Fortov, V.E., Budnik, A.P., D’yachenko, P.P., Rykov, V.A., and Rykov, K.V., Prikl. Fiz., 2009, no. 1, p. 46.

  13. Filippov, A.V., Babichev, V.N., Dyatko, N.A., Pal’, A.F., Starostin, A.N., Taran, M.D., and Fortov, V.E., J. Exp. Theor. Phys., 2006, vol. 102, no. 2, p. 342.

    Article  ADS  Google Scholar 

  14. Vladimirov, V.I., Deputatova, L.V., Molotkov, V.I., Nefedov, A.P., Rykov, V.A., Filinov, V.S., Fortov, V.E., and Khudyakov, A.V., Plasma Phys. Rep., 2001, vol. 27, no. 1, p. 36.

    Article  ADS  Google Scholar 

  15. Filippov, A.V., Babichev, V.N., Pal’, A.F., Starostin, A.N., Cherkovets, V.E., Rerikh, V.K., and Taran, M.D., Plasma Phys. Rep., 2015, vol. 41, no. 11, p. 895.

    Article  ADS  Google Scholar 

  16. Vaulina, O.S., Petrov, S.F., Fortov, V.E., Khrapak, A.G., and Khrapak, S.A., Pylevaya plazma: eksperiment i teoriya (Dusty Plasma: Experiment and Theory), Moscow: Fizmatlit, 2009.

    Google Scholar 

  17. Fortov, V.E., Rykov, V.A., Vladimirov, V.I., Deputatova, L.V., Molotkov, V.I., Petrov, O.F., Filinov, V.S., Budnik, A.P., D’yachenko, P.P., Rykov, K.V., and Khudyakov, A.V., Dokl. Phys., 2004, vol. 49, no. 9, p. 497.

    Article  ADS  Google Scholar 

  18. Vladimirov, V.I., Deputatova, L.V., Rykov, V.A., Fortov, V.E., and Khudyakov, A.V., in Fizika ekstremal’nykh sostoyanii veshchestva 2002: Sbornik dokladov (Physics of Extreme States of Matter 2002: Collection of Reports), Chernogolovka: Inst. Problem Khim. Fiz., Ross. Akad. Nauk, 2002, p. 142.

    Google Scholar 

  19. Andryushin, I.I., Vladimirov, V.I., Deputatova, L.V., Zherebtsov, V.A., Meshakin, V.I., Prudnikov, P.I., and Rykov, V.A., High Temp., 2013, vol. 51, no. 6, p. 733.

    Article  Google Scholar 

  20. Andryushin, I.I., Vladimirov, V.I., Deputatova, L.V., Zherebtsov, V.A., Meshakin, V.I., Prudnikov, P.I., and Rykov, V.A., High Temp., 2014, vol. 52, no. 3, p. 337.

    Article  Google Scholar 

  21. Andryushin, I.I. and Zherebtsov, V.A., Tech. Phys., 2016, vol. 61, no. 10, p. 1489.

    Article  Google Scholar 

  22. Vladimirov, V.I., Deputatova, L.V., Nefedov, A.P., Fortov, V.E., Rykov, V.A., and Khudyakov, A.V., J. Exp. Theor. Phys., 2001, vol. 93, no. 2, p. 313.

    Article  ADS  Google Scholar 

  23. Vladimirov, V.I., Deputatova, L.V., Krutov, D.V., Rykov, V.A., Rykov, K.V., and Khudyakov, A.V., in Nauchnye trudy Inst. teplofiziki ekstremal’nykh sostoyanii. Sbornik (Collection of Scientific Works of Inst. Thermophysics of Extremal States), Moscow: Ob”ed. Inst. Vys. Temp. Ross. Akad. Nauk, 2002, no. 5, p. 241.

  24. Fortov, V.E., Khrapak, A.G., Khrapak, S.A., Molotkov, V.I., and Petrov, O.F., Phys.—Usp., 2004, vol. 47, no. 5, p. 447.

    Article  ADS  Google Scholar 

  25. Morfill, G. and Tsytovich, V., Plasma Phys. Rep., 2000, vol. 26, no. 8, p. 682.

    Article  ADS  Google Scholar 

  26. Khrapak, S.A., Ivlev, A.V., Morfill, G.E., and Thomas, H.M., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2002, vol. 66, 046414.

    Article  ADS  Google Scholar 

  27. Ignatov, A.M., Plasma Phys. Rep., 2005, vol. 31, no. 1, p. 46.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the Russian Foundation of Basic Research and the Government of Kaluga oblast, project no. 14-42-03006-r_tsentr_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Andryushin.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andryushin, I.I., Zherebtsov, V.A., Meshakin, V.I. et al. Recombination Waves in Dusty Plasma of a Non-Self-Sustained Discharge. High Temp 56, 632–639 (2018). https://doi.org/10.1134/S0018151X18050048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18050048

Keywords

Navigation