High Temperature

, Volume 56, Issue 2, pp 255–262 | Cite as

Functional Surfaces with Enhanced Heat Transfer for Spray Cooling Technology

Heat and Mass Transfer and Physical Gasdynamics
  • 6 Downloads

Abstract

In this study the effects of nano/microstructuring and surface chemistry on wettability, evaporation rate and the Leidenfrost temperature are experimentally investigated. The functional surfaces with two alternative patterns were originally fabricated via direct femtosecond laser surface processing of polished silicon wafer in air at a fluence slightly above ablation threshold. The droplet lifetime method was used to measure the evaporation rate of a water droplet (4.5 μL) at surface temperatures of 25–350°C and to determine the Leidenfrost temperature. Generally, after processing the functional surfaces with hierarchical surface morphology demonstrate enhanced wetting behavior, evaporation rate enhancement and positive shifts in the Leidenfrost temperature. The functional surfaces with a microgrooved surface pattern, extensively covered by flake-like nanostructures, exhibit strong superhydrophilicity, resulted in a significant temperature-dependent enhancement of evaporation rate (up to 6 times) and an increase of about 30°C in the Leidenfrost temperature relative to the polished surface. The functional surfaces with a microcratered surface pattern being only hydrophilic demonstrate a nearly twofold temperature-independent enhancement of evaporation rate. Thermostability tests showed the heating of the functional surfaces above 340°C to be resulted in a drastically deteriorated wettability and a reduction of evaporative heat transfer performance under repeated experiments.

Keywords

femtosecond laser silicon wettability superhydrophilicity superhydrophobicity evaporation rate heat transfer thermal training 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kruse, C., Anderson, T., Wilson, C., Zuhlke, C., Alexander, D., Gogos, G., and Ndao, S., Int. J. Heat Mass Transfer 2014, vol. 82, p. 109.CrossRefGoogle Scholar
  2. 2.
    Kruse, C., Anderson, T., Wilson, C., Zuhlke, C., Alexander, D., Gogos, G., and Ndao, S., Langmuir 2013, vol. 29, p. 9798.CrossRefGoogle Scholar
  3. 3.
    Frysali, M.A., Papoutsakis, L., Kenanakis, G., and Anastasiadis, S.H., J. Phys. Chem. C, 2015, vol. 119, no. 45, p. 25401.CrossRefGoogle Scholar
  4. 4.
    Stratakis, E., Mateescu, A., Barberoglou, M., Vamvakaki, M., Fotakis, C., and Anastasiadis, S.H., Chem. Commun. 2010, vol. 46, p. 4136.CrossRefGoogle Scholar
  5. 5.
    Zhang, X., Liu, H., Huang, X., and Jiang, H., J. Mater. Chem. C, 2015, vol. 3, p. 3336.CrossRefGoogle Scholar
  6. 6.
    Matsuda, T., Sano, T., Arakawa, K., and Hirose, A., Appl. Phys. Lett. 2014, vol. 105, 021902.ADSCrossRefGoogle Scholar
  7. 7.
    Matsuda, T., Sano, T., Arakawa, K., and Hirose, A., J. Appl. Phys., 2014, vol. 116, 183506.CrossRefGoogle Scholar
  8. 8.
    Vorobyev, A. and Guo, C., Laser Photonics Rev. 2013, vol. 7, no. 3, p. 385.CrossRefGoogle Scholar
  9. 9.
    Rodriguez, R. and Redman, R., J. Exp. Bot., 2008, vol. 59, no. 5, p. 1109.CrossRefGoogle Scholar
  10. 10.
    Otten, A. and Herminghaus, S., Langmuir 2004, vol. 20, p. 2405.CrossRefGoogle Scholar
  11. 11.
    Neinhuis, C. and Barthlott, W., Ann. Bot. (Oxford, U.K.) 1997, vol. 79, no. 6, p. 667.CrossRefGoogle Scholar
  12. 12.
    Vorobyev, A. and Guo, C., J. Appl. Phys., 2015, vol. 117, 033103.ADSCrossRefGoogle Scholar
  13. 13.
    Vorobyev, A.Y. and Guo, C., Opt. Express 2010, vol. 18, no. 7, p. 6456.ADSCrossRefGoogle Scholar
  14. 14.
    Zorba, V., Persano, L., Pisignano, D., Athanassiou, A., Stratakis, E., Cingolani, R., Tzanetakis, P., and Fotakis, C., Nanotecnology 2006, vol. 17, p. 3234.ADSCrossRefGoogle Scholar
  15. 15.
    Paradisanos, I., Fotakis, C., Anastasiadis, S.H., and Stratakis, E., Appl. Phys. Lett. 2015, vol. 107, 111603.ADSCrossRefGoogle Scholar
  16. 16.
    Baldacchini, T., Carey, J.E., Zhou, M., and Mazur, E., Langmuir 2006, vol. 22, no. 11, p. 4917.CrossRefGoogle Scholar
  17. 17.
    Barberoglou, M., Zorba, V., Stratakis, E., Spanakis, E., Tzanetakis, P., Anastasiadis, S.H., and Fotakis, C., Appl. Surf. Sci. 2009, vol. 255, p. 5425.ADSCrossRefGoogle Scholar
  18. 18.
    Cottin-Bizonne, C., Barrat, J.L., Bocquet, L., and Charlaix, E., Nat. Mater. 2003, vol. 2, p. 237.ADSCrossRefGoogle Scholar
  19. 19.
    Koch, K., Bhushan, B., and Barthlott, W., Prog. Mater. Sci. 2009, vol. 54, p. 137.CrossRefGoogle Scholar
  20. 20.
    Genzer, J. and Efimenko, K., Biofouling 2006, vol. 22, p. 339.CrossRefGoogle Scholar
  21. 21.
    Gholaminejad, A. and Hosseini, R., J. Electron. Cool. Therm. Control, 2013, vol. 3, p. 1.ADSCrossRefGoogle Scholar
  22. 22.
    Celia, E., Darmanin, T., Taffin de Givenchy, E., Amigoni, S., and Guittard, F., J. Colloid Interface Sci. 2013, vol. 402, p. 1.ADSCrossRefGoogle Scholar
  23. 23.
    Xi, J., Feng, L., and Jiang, L., Appl. Phys. Lett. 2008, vol. 92, 053102.ADSCrossRefGoogle Scholar
  24. 24.
    Gottfried, B.S., Lee, C.J., and Bell, K.J., Int. J. Heat Mass Transfer 1966, vol. 9, p. 1167.CrossRefGoogle Scholar
  25. 25.
    Romashevskiy, S.A., Agranat, M.B., and Dmitriev, A.S., High Temp. 2016, vol. 54, no. 3, p. 461.CrossRefGoogle Scholar
  26. 26.
    Quéré, D., Annu. Rev. Fluid Mech. 2013, vol. 45, p. 197.ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Liu, G. and Craig, V.S., Faraday Discuss. 2010, vol. 146, p. 141.ADSCrossRefGoogle Scholar
  28. 28.
    Bernardin, J.D. and Mudawar, I., Int. J. Heat Mass Transfer 1997, vol. 40, p. 2579.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations