Advertisement

High Temperature

, Volume 56, Issue 2, pp 275–295 | Cite as

Gas-Solid Flows Past Bodies

  • A. Yu. Varaksin
Review
  • 16 Downloads

Abstract

The paper presents a review of theoretical and experimental works devoted to two-phase (gas-solid) flows past bodies. The particularities of particle motion in the vicinity of bodies of various shapes and the influence of the disperse phase on the drag force and heat transfer are considered. Some consequences of the interaction of particles with body surfaces (erosive destruction, gasdynamic spraying, icing, and glowing) are analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yanenko, N.N., Soloukhin, R.I., Papyrin, A.N., and Fomin, V.M., Sverkhzvukovye dvukhfaznye techeniya v usloviyakh skorostnoi neravnovesnosti chastits (Supersonic Two-Phase Flows under High-Speed Nonequilibrium of Particles), Novosibirsk: Nauka 1980.Google Scholar
  2. 2.
    Gilinskii, M.M. and Stasenko, A.L., Sverkhzvukovye gazodispersnye strui (Supersonic Gas-Dispersed Streams), Moscow: Mashinostroenie, 1990.Google Scholar
  3. 3.
    Mikhatulin, D.S., Polezhaev, Yu.V., and Reviznikov, D.L., Teploobmen i razrushenie tel v sverkhzvukovom geterogennom potoke (Heat Transfer and Destruction of Bodies in Supersonic Heterogeneous Flow), Moscow: Yanus-K 2007.Google Scholar
  4. 4.
    Varaksin, A.Yu., Stolknoveniya v potokakh gaza s tverdymi chastitsami (Collisions in Gas Flows with Solid Particles), Moscow: Fizmatlit, 2008.Google Scholar
  5. 5.
    Mikhatulin, D.S., Polezhaev, Yu.V., and Reviznikov, D.L., Teplomassoobmen, termokhimicheskoe i termoerozionnoe razrushenie teplovoi zashchity (Heat and Mass Transfer, Thermochemical and Thermal Erosion Destruction of Thermal Protection), Moscow: Yanus-K 2011.Google Scholar
  6. 6.
    Teoriya i proektirovanie gazoturbinnykh i kombinirovannykh ustanovok (Theory and Design of Gas Turbine and Combined Plants), Varaksin, A.Yu., Ed., Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2017.Google Scholar
  7. 7.
    Sukomel, A.S., Tsvetkov, F.F., and Kerimov, R.V., Teploobmen i gidravlicheskoe soprotivlenie pri dvizhenii gazovzvesi v trubakh (Heat Transfer and Hydraulic Resistance in the Motion of Gas Suspension in Pipes), Moscow: Energiya 1977.Google Scholar
  8. 8.
    Deich, M.E. and Filippov, G.A., Gazodinamika dvukhfaznykh sred (Gas Dynamics of Two-Phase Media), Moscow: Energoizdat, 1981.Google Scholar
  9. 9.
    Perel’man, R.G. and Pryakhin, V.V., Eroziya elementov parovykh turbin (Erosion of Elements of Steam Turbines), Moscow: Energoatomizdat, 1986.Google Scholar
  10. 10.
    Varaksin, A.Yu. and Zaichik, L.I., High Temp. 1998, vol. 36, no. 6, p. 983.Google Scholar
  11. 11.
    Zaichik, L.I. and Varaksin, A.Yu., High Temp. 1999, vol. 37, no. 4, p. 655.Google Scholar
  12. 12.
    Varaksin, A.Yu., Polezhaev, Yu.V., and Polyakov, A.F., High Temp. 1998, vol. 36, no. 5, p. 744.Google Scholar
  13. 13.
    Varaksin, A.Yu., Polezhaev, Yu.V., and Polyakov, A.F., Int. J. Heat Fluid Flow 2000, vol. 21, no. 5, p. 562.CrossRefGoogle Scholar
  14. 14.
    Pakhomov, M.A., Protasov, M.V., Terekhov, V.I., and Varaksin, A.Yu., Int. J. Heat Mass Transfer 2007, vol. 50, p. 2107.CrossRefGoogle Scholar
  15. 15.
    Varaksin, A.Yu., High Temp. 2015, vol. 53, no. 3, p. 423.CrossRefGoogle Scholar
  16. 16.
    Osiptsov, A.N., Fluid Dyn. (Engl. Transl.) 1980, vol. 15, no. 4, p. 512.ADSCrossRefGoogle Scholar
  17. 17.
    Osiptsov, A.N., Fluid Dyn. (Engl. Transl.) 1984, vol. 19, no. 3, p. 378.ADSCrossRefGoogle Scholar
  18. 18.
    Osiptsov, A.N., Fluid Dyn. (Engl. Transl.) 1988, vol. 23, no. 6, p. 867.ADSCrossRefGoogle Scholar
  19. 19.
    Naumov, V.A., Fluid Dyn. (Engl. Transl.) 1988, vol. 23, no. 6, p. 943.ADSCrossRefGoogle Scholar
  20. 20.
    Varaksin, A.Yu., Mikhatulin, D.S., Polezhaev, Yu.V., and Polyakov, A.F., High Temp. 1995, vol. 33, no. 6, p. 911.Google Scholar
  21. 21.
    Pakhomov, M.A. and Terekhov, V.I., High Temp. 2016, vol. 54, no. 3, p. 330.CrossRefGoogle Scholar
  22. 22.
    Pakhomov, M.A. and Terekhov, V.I., Fluid Dyn. (Engl. Transl.) 2016, vol. 51, no. 1, p. 70.CrossRefGoogle Scholar
  23. 23.
    Pakhomov, M.A. and Terekhov, V.I., High Temp. 2018, vol. 56, no. 2(in press).Google Scholar
  24. 24.
    Pakhomov, M.A. and Terekhov, V.I., High Temp. 2017, vol. 55, no. 6, p. 950.Google Scholar
  25. 25.
    Varaksin, A.Yu., Romash, M.E., Kopeitsev, V.N., and Gorbachev, M.A., High Temp. 2010, vol. 48, no. 6, p. 918.CrossRefGoogle Scholar
  26. 26.
    Varaksin, A.Yu., Romash, M.E., and Kopeitsev, V.N., High Temp. 2010, vol. 48, no. 4, p. 588.CrossRefGoogle Scholar
  27. 27.
    Varaksin, A.Y., Romash, M.E., and Kopeitsev, V.N., in Proc. 6th Int. Symp. on Multiphase Flow, Heat Mass Transfer and Energy Conversion, AIP Conf. Proc. 2010, vol. 1207, p. 342.ADSGoogle Scholar
  28. 28.
    Varaksin, A.Y., Romash, M.E., Kopeitsev, V.N., and Gorbachev, M.A., Int. J. Heat Mass Transfer 2012, vol. 55, p. 6567.CrossRefGoogle Scholar
  29. 29.
    Varaksin, A.Y., Romash, M.E., and Kopeitsev, V.N., Int. J. Heat Mass Transfer 2013, vol. 64, p. 817.CrossRefGoogle Scholar
  30. 30.
    Varaksin, A.Yu., Protasov, M.V., and Teplitskii, Yu.S., High Temp. 2014, vol. 52, no. 4, p. 554.CrossRefGoogle Scholar
  31. 31.
    Varaksin, A.Yu., High Temp. 2016, vol. 54, no. 3, p. 409.CrossRefGoogle Scholar
  32. 32.
    Varaksin, A.Yu., High Temp. 2017, vol. 55, no. 2, p. 286.CrossRefGoogle Scholar
  33. 33.
    Tsirkunov, Yu.M., in Proc. Fourth Int. Conf. on Multiphase Flow (ICMF’01), New Orleans, 2001, paper 607 (CD–ROM).Google Scholar
  34. 34.
    Kudryavtsev, N.A., Mironova, M.V., and Yatsenko, V.P., J. Eng. Phys., 1990, vol. 59, no. 6, p. 1518.CrossRefGoogle Scholar
  35. 35.
    Michael, D.H. and Norey, P.W., J. Fluid Mech., 1969, vol. 17, p. 565.ADSCrossRefGoogle Scholar
  36. 36.
    Tsirkunov, Yu.M., Fluid Dyn. (Engl. Transl.) 1982, vol. 17, no. 1, p. 48.ADSCrossRefGoogle Scholar
  37. 37.
    Morsi, S.A. and Alexander, A.J., J. Fluid Mech., 1972, vol. 55, p. 193.ADSCrossRefGoogle Scholar
  38. 38.
    Varaksin, A.Yu. and Ivanov, T.F., High Temp. 2003, vol. 41, no. 1, p. 62.CrossRefGoogle Scholar
  39. 39.
    Ivanov, T.F. and Varaksin, A.Yu., High Temp. 2005, vol. 43, no. 2, p. 310.CrossRefGoogle Scholar
  40. 40.
    Vittel, B.V.R. and Tabakov, V., Aerokosm. Tekh. 1987, no. 12, p. 50.Google Scholar
  41. 41.
    Spokoinyi, F.E. and Gorbis, Z.R., Teplofiz. Vys. Temp. 1981, vol. 19, no. 1, p. 182.Google Scholar
  42. 42.
    Tsirkunov, Yu.M. and Tarasova, N.V., Teplofiz. Vys. Temp. 1992, vol. 30, no. 6, p. 1154.ADSGoogle Scholar
  43. 43.
    Varaksin, A.Yu. and Ivanov, T.F., High Temp. 2003, vol. 41, no. 4, p. 481.CrossRefGoogle Scholar
  44. 44.
    Dombrovskii, L.A. and Yukina, E.P., Teplofiz. Vys. Temp. 1983, vol. 21, no. 3, p. 525.ADSGoogle Scholar
  45. 45.
    Dombrovskii, L.A. and Yukina, E.P., Teplofiz. Vys. Temp. 1984, vol. 22, no. 4, p. 728.ADSGoogle Scholar
  46. 46.
    Dombrovskii, L.A., Teplofiz. Vys. Temp. 1986, vol. 24, no. 3, p. 558.Google Scholar
  47. 47.
    Davydov, Yu.M. and Nigmatulin, R.I., Dokl. Akad Nauk SSSR 1981, vol. 259, no. 1, p. 57.Google Scholar
  48. 48.
    Davydov, Yu.M., Enikeev, I.Kh., and Nigmatulin, R.I., J. Appl. Mech. Tech. Phys., 1990, vol. 31, no. 6, p. 860.ADSCrossRefGoogle Scholar
  49. 49.
    Sukhorukov, A.L., Vestn. Molodykh Uch., Ser.: Prikl. Mat. Mekh. 2002, no. 1, p. 98.Google Scholar
  50. 50.
    Romanyuk, D.A. and Tsirkunov, Yu.M., Mat. Model. 2010, vol. 22, no. 1, p. 136.Google Scholar
  51. 51.
    Tsirkunov, Yu.M. and Romanyuk, D.A., Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, 2011, no. 4(3), p. 1237.Google Scholar
  52. 52.
    Carrier, G.F., J. Fluid Mech., 1958, vol. 4, p. 376.ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    Kriebel, A.R., J. Basic Eng., 1964, vol. 86, p. 655.CrossRefGoogle Scholar
  54. 54.
    Rudinger, G., Phys. Fluids 1964, vol. 7, p. 658.ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    Igra, O. and Ben-Dor, G., Israel J. Technol. 1980, vol. 18, p. 159.Google Scholar
  56. 56.
    Ben-Dor, G., Mond, M., Igra, O., and Martsiano, Y., KSME J., 1988, vol. 2, no. 1, p. 28.CrossRefGoogle Scholar
  57. 57.
    Igra, O. and Ben-Dor, G., Appl. Mech. Rev. 1988, vol. 41, no. 11, p. 379.ADSCrossRefGoogle Scholar
  58. 58.
    Ben-Dor, G., Appl. Mech. Rev. 1996, vol. 49, no. 10S, p. 141.ADSCrossRefGoogle Scholar
  59. 59.
    Volkov, A.N., Tsirkunov, Y.M., and Oesterle, B., Int. J. Multiphase Flow 2005, vol. 31, p. 1244.CrossRefGoogle Scholar
  60. 60.
    Molleson, G.V. and Stasenko, A.L., High Temp. 2009, vol. 47, no. 5, p. 680.CrossRefGoogle Scholar
  61. 61.
    Molleson, G.V. and Stasenko, A.L., High Temp. 2011, vol. 49, no. 1, p. 72.CrossRefGoogle Scholar
  62. 62.
    Molleson, G.V. and Stasenko, A.L., High Temp. 2013, vol. 51, no. 4, p. 537.CrossRefGoogle Scholar
  63. 63.
    Polezhaev, Yu.V., Teplogazodinamicheskaya otrabotka LA (Heat and Gasodynamic Treatment of Aircraft), Moscow: Mosk. Aviats. Inst., 1986.Google Scholar
  64. 64.
    Vasilevskii, E.B. and Yakovleva, L.V., Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, 2011, no. 4(5), p. 1053.Google Scholar
  65. 65.
    Varaksin, A.Yu. and Protasov, M.V., High Temp. 2017, vol. 55, no. 6, p. 945.CrossRefGoogle Scholar
  66. 66.
    Ginevskii, A.S., Teoriya turbulentnykh strui i sledov (Theory of Turbulent Jets and Traces), Moscow: Mashinostroenie, 1969.Google Scholar
  67. 67.
    Lashkov, V.A., J. Eng. Phys., 1991, vol. 60, no. 2, p. 154.CrossRefGoogle Scholar
  68. 68.
    Stasenko, A.L., J. Eng. Phys. Thermophys., 2007, vol. 80, no. 5, p. 885.CrossRefGoogle Scholar
  69. 69.
    Lashkov, V.A., Doctoral (Phys.–Math.) Dissertation, St. Petersburg: St. Petersburg State Univ., 2012.Google Scholar
  70. 70.
    Balanin, B.A. and Zlobin, V.V., Fluid Dyn. (Engl. Transl.) 1979, vol. 14, no. 3, p. 456.ADSCrossRefGoogle Scholar
  71. 71.
    Balanin, B.A., Fluid Dyn. (Engl. Transl.) 1984, vol. 19, no. 5, p.193.Google Scholar
  72. 72.
    Balanin, B.A. and Lashkov, V.A., Fluid Dyn. (Engl. Transl.) 1982, vol. 17, no. 2, p. 317.ADSCrossRefGoogle Scholar
  73. 73.
    Boothroyd, R.G., Flowing Gas–Solids Suspensions, London: Chapman and Hall, 1971.Google Scholar
  74. 74.
    Dunbar, L.E., Courtney, J.P., and McMillen, L.D., AIAA J., 1975, vol. 13, no. 7, p. 908.ADSCrossRefGoogle Scholar
  75. 75.
    Polezhaev, Yu.V., Repin, I.V., and Mikhatulin, D.S., Teplofiz. Vys. Temp. 1992, vol. 30, no. 6, p. 1147.ADSGoogle Scholar
  76. 76.
    Molleson, G.V. and Stasenko, A.L., High Temp. 2014, vol. 52, no. 6, p. 881.CrossRefGoogle Scholar
  77. 77.
    Molleson, G.V. and Stasenko, A.L., High Temp. 2017, vol. 55, no. 1, p. 87.CrossRefGoogle Scholar
  78. 78.
    Molleson, G.V. and Stasenko, A.L., High Temp. 2017, vol. 55, no. 6, p. 906.CrossRefGoogle Scholar
  79. 79.
    Treatise on Materials Science and Technology, vol. 16: Erosion, Preece, C.M., Ed., New York: Academic, 1979.Google Scholar
  80. 80.
    Springer, G.S., Erosion by Liquid Impact, New York: Wiley, 1976.Google Scholar
  81. 81.
    Mikhatulin, D.S., Polezhaev, Yu.V., and Reviznikov, D.L., High Temp. 2003, vol. 41, no. 1, p. 88.CrossRefGoogle Scholar
  82. 82.
    Polezhaev, Yu.V., J. Eng. Phys., 1979, vol. 37, no. 3, p. 1007.CrossRefGoogle Scholar
  83. 83.
    Hooker, W.Y., Watson, R., and Morsell, A.L., Phys. Fluids 1969, vol. 12, no. 5, p. 1169.CrossRefGoogle Scholar
  84. 84.
    Trunev, A.P. and Fomin, V.M., J. Appl. Mech. Tech. Phys., 1984, vol. 25, no. 4, p. 591.ADSCrossRefGoogle Scholar
  85. 85.
    Shebeko, V.N., J. Eng. Phys., 1986, vol. 51, no. 3, p. 1062.CrossRefGoogle Scholar
  86. 86.
    Pankratov, B.M., Polezhaev, Yu.V., and Rud’ko, A.K., Vzaimodeistvie materialov s gazovymi potokami (Interaction of Materials with Gas Flows), Moscow: Mashinostroenie 1976.Google Scholar
  87. 87.
    Sheldon, G.L., J. Basic Eng., 1970, vol. 92, no. 3, p. 619.CrossRefGoogle Scholar
  88. 88.
    Rickerby, D.G. and McMillan, N.H., Wear 1972, vol. 17, p. 171.Google Scholar
  89. 89.
    Rickerby, D.G. and McMillan, N.H., Wear 1980, vol. 60, p. 369.CrossRefGoogle Scholar
  90. 90.
    Kleis, I., Tr. Tallin. Politekh. Inst., Ser. A 1959, no. 163, p. 3.Google Scholar
  91. 91.
    Suur, U.K., Tr. Tallin. Politekh. Inst., Ser. A 1966, no. 237, p. 63.Google Scholar
  92. 92.
    Young, J.P. and Ruff, A.W., J. Eng. Mater. Technol., 1977, vol. 99, p. 121.CrossRefGoogle Scholar
  93. 93.
    Ives, L.K., J. Eng. Mater. Technol., 1977, vol. 99, p. 126.CrossRefGoogle Scholar
  94. 94.
    Wakeman, T. and Tabakoff, W., J. Aircr., 1979, vol. 16, p. 828.CrossRefGoogle Scholar
  95. 95.
    Gat, N. and Tabakoff, W., Wear 1978, vol. 50, no. 1, p. 85.CrossRefGoogle Scholar
  96. 96.
    Tabakoff, W. and Greut, G., An experimental investigation of certain aerodynamic effects on erosion, AIAA Pap. 74-639, 1974.Google Scholar
  97. 97.
    Swain, C.E., The effects of particle shock laden interaction on reentry vehicle performance, AIAA Pap. 75-734, 1975.Google Scholar
  98. 98.
    Polezhaev, Yu.V. and Panchenko, V.I., J. Eng. Phys., 1987, vol. 52, no. 5, p. 507.CrossRefGoogle Scholar
  99. 99.
    Kudinov, V.V. and Ivanov, V.M., Nanesenie plazmoi tugoplavkikh pokrytii (Plasma Application of Refractory Coatings), Moscow: Mashinostroenie, 1981.Google Scholar
  100. 100.
    Borisov, Yu.S. and Borisova, A.L., Plazmennye poroshkovye pokrytiya (Plasma Powder Coatings), Kiev: Tekhnika, 1986.Google Scholar
  101. 101.
    Thorpe, R.J. and Thorpe, M.L., in Proc. 5th National Thermal Spray Conf. and Exposition on Thermal Spray Technology (NTSC 93), Anaheim, CA 1993, p. 199.Google Scholar
  102. 102.
    Fincke, J.R., Swank, W.D., and Haggard, D.C., in Proc. 7th National Thermal Spray Conf.—Thermal Spray Industrial Applications, Boston, MA 1994, p. 325.Google Scholar
  103. 103.
    Guo, Y., Koga, G.Y., Moreira, J.A., Savoie, S., Schulz, R., Kiminami, C.S., Bolfarini, C., and Botta, W.J., Mater. Des. 2016, vol. 111, p. 608.CrossRefGoogle Scholar
  104. 104.
    Shorshorov, M.Kh. and Kharlamov, Yu.A., Fizikokhimicheskie osnovy detonatsionno-gazovogo napyleniya pokrytii (Physicochemical Bases of Detonation-Gas Spraying of Coatings), Moscow: Nauka, 1978.Google Scholar
  105. 105.
    Bartenev, S.S., Fed’ko, Yu.P., and Grigorov, A.I., Detonatsionnye pokrytiya v mashinostroenii (Detonation Coatings in Mechanical Engineering), Lenindgrad: Mashinostroenie 1982.Google Scholar
  106. 106.
    Alkhimov, A.P., Kosarev, V.F., and Papyrin, A.N., Dokl. Akad. Nauk SSSR 1990, vol. 315, p. 1062.Google Scholar
  107. 107.
    Alkhimov, A.P., Gulidov, A.I., Kosarev, V.F., and Nesterovich, N.I., J. Appl. Mech. Tech. Phys., 2000, vol. 41, no. 1, p. 188.ADSMathSciNetCrossRefGoogle Scholar
  108. 108.
    Alkhimov, A.P., Kosarev, V.F., and Klinkov, S.V., J. Therm. Spray Technol., 2001, vol. 10, no. 2, p. 375.ADSCrossRefGoogle Scholar
  109. 109.
    Alkhimov, A.P., Klinkov, S.V., Kosarev, V.F., and Fomin, V.M., Kholodnoe gazodinamicheskoe napylenie. Teoriya i praktika (Cold Gasdynamic Sputtering: Theory and Practice), Moscow: Fizmatlit 2010.Google Scholar
  110. 110.
    Ice Accretion Simulation, AGARD-AR-344, 1997.Google Scholar
  111. 111.
    Aircraft Icing Handbook, Civil Aviation Authority of New Zealand, 2000.Google Scholar
  112. 112.
    Fortin, G., Ilinca, A., Laforte, J.-L., and Brandi, V., J. Aircr., 2004, vol. 41, no. 1, p. 119.CrossRefGoogle Scholar
  113. 113.
    Alekseenko, S.V. and Prihod’ko, A.A., Uch. Zap. TsAGI 2013, vol. 44, no. 6, p. 25.Google Scholar
  114. 114.
    Amelyushkin, I.A., Grinats, E.S., and Stasenko, A.L., Vestn. Mosk. Gos. Obl. Univ., Ser. Fiz.-Mat. 2012, no. 2, p. 153.Google Scholar
  115. 115.
    Grinats, E.S., Miller, A.B., Potapov, Yu. F., and Stasenko, A.L., Vestn. Mosk. Gos. Obl. Univ., Ser. Fiz.- Mat. 2013, no. 3, p. 84.Google Scholar
  116. 116.
    Vasilevskii, E.B., Osiptsov, A.N., Chirikhin, A.V., and Yakovleva, L.V., J. Eng. Phys. Thermophys., 2001, vol. 74, no. 6, p. 1399.CrossRefGoogle Scholar
  117. 117.
    Molleson, G.V. and Stasenko, A.L., High Temp. 2012, vol. 50, no. 6, p. 755.CrossRefGoogle Scholar
  118. 118.
    Molleson, G.V. and Stasenko, A.L., High Temp. 2015, vol. 53, no. 6, p. 855.CrossRefGoogle Scholar
  119. 119.
    Reviznikov, D.L., Sposobin, A.V., and Sukharev, T.Yu., High Temp. 2017, vol. 55, no. 3, p. 400.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations