Skip to main content
Log in

Gas-Solid Flows Past Bodies

  • Review
  • Published:
High Temperature Aims and scope

Abstract

The paper presents a review of theoretical and experimental works devoted to two-phase (gas-solid) flows past bodies. The particularities of particle motion in the vicinity of bodies of various shapes and the influence of the disperse phase on the drag force and heat transfer are considered. Some consequences of the interaction of particles with body surfaces (erosive destruction, gasdynamic spraying, icing, and glowing) are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yanenko, N.N., Soloukhin, R.I., Papyrin, A.N., and Fomin, V.M., Sverkhzvukovye dvukhfaznye techeniya v usloviyakh skorostnoi neravnovesnosti chastits (Supersonic Two-Phase Flows under High-Speed Nonequilibrium of Particles), Novosibirsk: Nauka 1980.

    Google Scholar 

  2. Gilinskii, M.M. and Stasenko, A.L., Sverkhzvukovye gazodispersnye strui (Supersonic Gas-Dispersed Streams), Moscow: Mashinostroenie, 1990.

    Google Scholar 

  3. Mikhatulin, D.S., Polezhaev, Yu.V., and Reviznikov, D.L., Teploobmen i razrushenie tel v sverkhzvukovom geterogennom potoke (Heat Transfer and Destruction of Bodies in Supersonic Heterogeneous Flow), Moscow: Yanus-K 2007.

    Google Scholar 

  4. Varaksin, A.Yu., Stolknoveniya v potokakh gaza s tverdymi chastitsami (Collisions in Gas Flows with Solid Particles), Moscow: Fizmatlit, 2008.

    Google Scholar 

  5. Mikhatulin, D.S., Polezhaev, Yu.V., and Reviznikov, D.L., Teplomassoobmen, termokhimicheskoe i termoerozionnoe razrushenie teplovoi zashchity (Heat and Mass Transfer, Thermochemical and Thermal Erosion Destruction of Thermal Protection), Moscow: Yanus-K 2011.

    Google Scholar 

  6. Teoriya i proektirovanie gazoturbinnykh i kombinirovannykh ustanovok (Theory and Design of Gas Turbine and Combined Plants), Varaksin, A.Yu., Ed., Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2017.

  7. Sukomel, A.S., Tsvetkov, F.F., and Kerimov, R.V., Teploobmen i gidravlicheskoe soprotivlenie pri dvizhenii gazovzvesi v trubakh (Heat Transfer and Hydraulic Resistance in the Motion of Gas Suspension in Pipes), Moscow: Energiya 1977.

    Google Scholar 

  8. Deich, M.E. and Filippov, G.A., Gazodinamika dvukhfaznykh sred (Gas Dynamics of Two-Phase Media), Moscow: Energoizdat, 1981.

    Google Scholar 

  9. Perel’man, R.G. and Pryakhin, V.V., Eroziya elementov parovykh turbin (Erosion of Elements of Steam Turbines), Moscow: Energoatomizdat, 1986.

    Google Scholar 

  10. Varaksin, A.Yu. and Zaichik, L.I., High Temp. 1998, vol. 36, no. 6, p. 983.

    Google Scholar 

  11. Zaichik, L.I. and Varaksin, A.Yu., High Temp. 1999, vol. 37, no. 4, p. 655.

    Google Scholar 

  12. Varaksin, A.Yu., Polezhaev, Yu.V., and Polyakov, A.F., High Temp. 1998, vol. 36, no. 5, p. 744.

    Google Scholar 

  13. Varaksin, A.Yu., Polezhaev, Yu.V., and Polyakov, A.F., Int. J. Heat Fluid Flow 2000, vol. 21, no. 5, p. 562.

    Article  Google Scholar 

  14. Pakhomov, M.A., Protasov, M.V., Terekhov, V.I., and Varaksin, A.Yu., Int. J. Heat Mass Transfer 2007, vol. 50, p. 2107.

    Article  Google Scholar 

  15. Varaksin, A.Yu., High Temp. 2015, vol. 53, no. 3, p. 423.

    Article  Google Scholar 

  16. Osiptsov, A.N., Fluid Dyn. (Engl. Transl.) 1980, vol. 15, no. 4, p. 512.

    Article  ADS  Google Scholar 

  17. Osiptsov, A.N., Fluid Dyn. (Engl. Transl.) 1984, vol. 19, no. 3, p. 378.

    Article  ADS  Google Scholar 

  18. Osiptsov, A.N., Fluid Dyn. (Engl. Transl.) 1988, vol. 23, no. 6, p. 867.

    Article  ADS  Google Scholar 

  19. Naumov, V.A., Fluid Dyn. (Engl. Transl.) 1988, vol. 23, no. 6, p. 943.

    Article  ADS  Google Scholar 

  20. Varaksin, A.Yu., Mikhatulin, D.S., Polezhaev, Yu.V., and Polyakov, A.F., High Temp. 1995, vol. 33, no. 6, p. 911.

    Google Scholar 

  21. Pakhomov, M.A. and Terekhov, V.I., High Temp. 2016, vol. 54, no. 3, p. 330.

    Article  Google Scholar 

  22. Pakhomov, M.A. and Terekhov, V.I., Fluid Dyn. (Engl. Transl.) 2016, vol. 51, no. 1, p. 70.

    Article  Google Scholar 

  23. Pakhomov, M.A. and Terekhov, V.I., High Temp. 2018, vol. 56, no. 2(in press).

  24. Pakhomov, M.A. and Terekhov, V.I., High Temp. 2017, vol. 55, no. 6, p. 950.

    Google Scholar 

  25. Varaksin, A.Yu., Romash, M.E., Kopeitsev, V.N., and Gorbachev, M.A., High Temp. 2010, vol. 48, no. 6, p. 918.

    Article  Google Scholar 

  26. Varaksin, A.Yu., Romash, M.E., and Kopeitsev, V.N., High Temp. 2010, vol. 48, no. 4, p. 588.

    Article  Google Scholar 

  27. Varaksin, A.Y., Romash, M.E., and Kopeitsev, V.N., in Proc. 6th Int. Symp. on Multiphase Flow, Heat Mass Transfer and Energy Conversion, AIP Conf. Proc. 2010, vol. 1207, p. 342.

    ADS  Google Scholar 

  28. Varaksin, A.Y., Romash, M.E., Kopeitsev, V.N., and Gorbachev, M.A., Int. J. Heat Mass Transfer 2012, vol. 55, p. 6567.

    Article  Google Scholar 

  29. Varaksin, A.Y., Romash, M.E., and Kopeitsev, V.N., Int. J. Heat Mass Transfer 2013, vol. 64, p. 817.

    Article  Google Scholar 

  30. Varaksin, A.Yu., Protasov, M.V., and Teplitskii, Yu.S., High Temp. 2014, vol. 52, no. 4, p. 554.

    Article  Google Scholar 

  31. Varaksin, A.Yu., High Temp. 2016, vol. 54, no. 3, p. 409.

    Article  Google Scholar 

  32. Varaksin, A.Yu., High Temp. 2017, vol. 55, no. 2, p. 286.

    Article  Google Scholar 

  33. Tsirkunov, Yu.M., in Proc. Fourth Int. Conf. on Multiphase Flow (ICMF’01), New Orleans, 2001, paper 607 (CD–ROM).

    Google Scholar 

  34. Kudryavtsev, N.A., Mironova, M.V., and Yatsenko, V.P., J. Eng. Phys., 1990, vol. 59, no. 6, p. 1518.

    Article  Google Scholar 

  35. Michael, D.H. and Norey, P.W., J. Fluid Mech., 1969, vol. 17, p. 565.

    Article  ADS  Google Scholar 

  36. Tsirkunov, Yu.M., Fluid Dyn. (Engl. Transl.) 1982, vol. 17, no. 1, p. 48.

    Article  ADS  Google Scholar 

  37. Morsi, S.A. and Alexander, A.J., J. Fluid Mech., 1972, vol. 55, p. 193.

    Article  ADS  Google Scholar 

  38. Varaksin, A.Yu. and Ivanov, T.F., High Temp. 2003, vol. 41, no. 1, p. 62.

    Article  Google Scholar 

  39. Ivanov, T.F. and Varaksin, A.Yu., High Temp. 2005, vol. 43, no. 2, p. 310.

    Article  Google Scholar 

  40. Vittel, B.V.R. and Tabakov, V., Aerokosm. Tekh. 1987, no. 12, p. 50.

    Google Scholar 

  41. Spokoinyi, F.E. and Gorbis, Z.R., Teplofiz. Vys. Temp. 1981, vol. 19, no. 1, p. 182.

    Google Scholar 

  42. Tsirkunov, Yu.M. and Tarasova, N.V., Teplofiz. Vys. Temp. 1992, vol. 30, no. 6, p. 1154.

    ADS  Google Scholar 

  43. Varaksin, A.Yu. and Ivanov, T.F., High Temp. 2003, vol. 41, no. 4, p. 481.

    Article  Google Scholar 

  44. Dombrovskii, L.A. and Yukina, E.P., Teplofiz. Vys. Temp. 1983, vol. 21, no. 3, p. 525.

    ADS  Google Scholar 

  45. Dombrovskii, L.A. and Yukina, E.P., Teplofiz. Vys. Temp. 1984, vol. 22, no. 4, p. 728.

    ADS  Google Scholar 

  46. Dombrovskii, L.A., Teplofiz. Vys. Temp. 1986, vol. 24, no. 3, p. 558.

    Google Scholar 

  47. Davydov, Yu.M. and Nigmatulin, R.I., Dokl. Akad Nauk SSSR 1981, vol. 259, no. 1, p. 57.

    Google Scholar 

  48. Davydov, Yu.M., Enikeev, I.Kh., and Nigmatulin, R.I., J. Appl. Mech. Tech. Phys., 1990, vol. 31, no. 6, p. 860.

    Article  ADS  Google Scholar 

  49. Sukhorukov, A.L., Vestn. Molodykh Uch., Ser.: Prikl. Mat. Mekh. 2002, no. 1, p. 98.

    Google Scholar 

  50. Romanyuk, D.A. and Tsirkunov, Yu.M., Mat. Model. 2010, vol. 22, no. 1, p. 136.

    Google Scholar 

  51. Tsirkunov, Yu.M. and Romanyuk, D.A., Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, 2011, no. 4(3), p. 1237.

    Google Scholar 

  52. Carrier, G.F., J. Fluid Mech., 1958, vol. 4, p. 376.

    Article  ADS  MathSciNet  Google Scholar 

  53. Kriebel, A.R., J. Basic Eng., 1964, vol. 86, p. 655.

    Article  Google Scholar 

  54. Rudinger, G., Phys. Fluids 1964, vol. 7, p. 658.

    Article  ADS  MathSciNet  Google Scholar 

  55. Igra, O. and Ben-Dor, G., Israel J. Technol. 1980, vol. 18, p. 159.

    Google Scholar 

  56. Ben-Dor, G., Mond, M., Igra, O., and Martsiano, Y., KSME J., 1988, vol. 2, no. 1, p. 28.

    Article  Google Scholar 

  57. Igra, O. and Ben-Dor, G., Appl. Mech. Rev. 1988, vol. 41, no. 11, p. 379.

    Article  ADS  Google Scholar 

  58. Ben-Dor, G., Appl. Mech. Rev. 1996, vol. 49, no. 10S, p. 141.

    Article  ADS  Google Scholar 

  59. Volkov, A.N., Tsirkunov, Y.M., and Oesterle, B., Int. J. Multiphase Flow 2005, vol. 31, p. 1244.

    Article  Google Scholar 

  60. Molleson, G.V. and Stasenko, A.L., High Temp. 2009, vol. 47, no. 5, p. 680.

    Article  Google Scholar 

  61. Molleson, G.V. and Stasenko, A.L., High Temp. 2011, vol. 49, no. 1, p. 72.

    Article  Google Scholar 

  62. Molleson, G.V. and Stasenko, A.L., High Temp. 2013, vol. 51, no. 4, p. 537.

    Article  Google Scholar 

  63. Polezhaev, Yu.V., Teplogazodinamicheskaya otrabotka LA (Heat and Gasodynamic Treatment of Aircraft), Moscow: Mosk. Aviats. Inst., 1986.

    Google Scholar 

  64. Vasilevskii, E.B. and Yakovleva, L.V., Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, 2011, no. 4(5), p. 1053.

    Google Scholar 

  65. Varaksin, A.Yu. and Protasov, M.V., High Temp. 2017, vol. 55, no. 6, p. 945.

    Article  Google Scholar 

  66. Ginevskii, A.S., Teoriya turbulentnykh strui i sledov (Theory of Turbulent Jets and Traces), Moscow: Mashinostroenie, 1969.

    Google Scholar 

  67. Lashkov, V.A., J. Eng. Phys., 1991, vol. 60, no. 2, p. 154.

    Article  Google Scholar 

  68. Stasenko, A.L., J. Eng. Phys. Thermophys., 2007, vol. 80, no. 5, p. 885.

    Article  Google Scholar 

  69. Lashkov, V.A., Doctoral (Phys.–Math.) Dissertation, St. Petersburg: St. Petersburg State Univ., 2012.

    Google Scholar 

  70. Balanin, B.A. and Zlobin, V.V., Fluid Dyn. (Engl. Transl.) 1979, vol. 14, no. 3, p. 456.

    Article  ADS  Google Scholar 

  71. Balanin, B.A., Fluid Dyn. (Engl. Transl.) 1984, vol. 19, no. 5, p.193.

    Google Scholar 

  72. Balanin, B.A. and Lashkov, V.A., Fluid Dyn. (Engl. Transl.) 1982, vol. 17, no. 2, p. 317.

    Article  ADS  Google Scholar 

  73. Boothroyd, R.G., Flowing Gas–Solids Suspensions, London: Chapman and Hall, 1971.

    Google Scholar 

  74. Dunbar, L.E., Courtney, J.P., and McMillen, L.D., AIAA J., 1975, vol. 13, no. 7, p. 908.

    Article  ADS  Google Scholar 

  75. Polezhaev, Yu.V., Repin, I.V., and Mikhatulin, D.S., Teplofiz. Vys. Temp. 1992, vol. 30, no. 6, p. 1147.

    ADS  Google Scholar 

  76. Molleson, G.V. and Stasenko, A.L., High Temp. 2014, vol. 52, no. 6, p. 881.

    Article  Google Scholar 

  77. Molleson, G.V. and Stasenko, A.L., High Temp. 2017, vol. 55, no. 1, p. 87.

    Article  Google Scholar 

  78. Molleson, G.V. and Stasenko, A.L., High Temp. 2017, vol. 55, no. 6, p. 906.

    Article  Google Scholar 

  79. Treatise on Materials Science and Technology, vol. 16: Erosion, Preece, C.M., Ed., New York: Academic, 1979.

  80. Springer, G.S., Erosion by Liquid Impact, New York: Wiley, 1976.

    Google Scholar 

  81. Mikhatulin, D.S., Polezhaev, Yu.V., and Reviznikov, D.L., High Temp. 2003, vol. 41, no. 1, p. 88.

    Article  Google Scholar 

  82. Polezhaev, Yu.V., J. Eng. Phys., 1979, vol. 37, no. 3, p. 1007.

    Article  Google Scholar 

  83. Hooker, W.Y., Watson, R., and Morsell, A.L., Phys. Fluids 1969, vol. 12, no. 5, p. 1169.

    Article  Google Scholar 

  84. Trunev, A.P. and Fomin, V.M., J. Appl. Mech. Tech. Phys., 1984, vol. 25, no. 4, p. 591.

    Article  ADS  Google Scholar 

  85. Shebeko, V.N., J. Eng. Phys., 1986, vol. 51, no. 3, p. 1062.

    Article  Google Scholar 

  86. Pankratov, B.M., Polezhaev, Yu.V., and Rud’ko, A.K., Vzaimodeistvie materialov s gazovymi potokami (Interaction of Materials with Gas Flows), Moscow: Mashinostroenie 1976.

    Google Scholar 

  87. Sheldon, G.L., J. Basic Eng., 1970, vol. 92, no. 3, p. 619.

    Article  Google Scholar 

  88. Rickerby, D.G. and McMillan, N.H., Wear 1972, vol. 17, p. 171.

    Google Scholar 

  89. Rickerby, D.G. and McMillan, N.H., Wear 1980, vol. 60, p. 369.

    Article  Google Scholar 

  90. Kleis, I., Tr. Tallin. Politekh. Inst., Ser. A 1959, no. 163, p. 3.

    Google Scholar 

  91. Suur, U.K., Tr. Tallin. Politekh. Inst., Ser. A 1966, no. 237, p. 63.

    Google Scholar 

  92. Young, J.P. and Ruff, A.W., J. Eng. Mater. Technol., 1977, vol. 99, p. 121.

    Article  Google Scholar 

  93. Ives, L.K., J. Eng. Mater. Technol., 1977, vol. 99, p. 126.

    Article  Google Scholar 

  94. Wakeman, T. and Tabakoff, W., J. Aircr., 1979, vol. 16, p. 828.

    Article  Google Scholar 

  95. Gat, N. and Tabakoff, W., Wear 1978, vol. 50, no. 1, p. 85.

    Article  Google Scholar 

  96. Tabakoff, W. and Greut, G., An experimental investigation of certain aerodynamic effects on erosion, AIAA Pap. 74-639, 1974.

    Google Scholar 

  97. Swain, C.E., The effects of particle shock laden interaction on reentry vehicle performance, AIAA Pap. 75-734, 1975.

    Google Scholar 

  98. Polezhaev, Yu.V. and Panchenko, V.I., J. Eng. Phys., 1987, vol. 52, no. 5, p. 507.

    Article  Google Scholar 

  99. Kudinov, V.V. and Ivanov, V.M., Nanesenie plazmoi tugoplavkikh pokrytii (Plasma Application of Refractory Coatings), Moscow: Mashinostroenie, 1981.

    Google Scholar 

  100. Borisov, Yu.S. and Borisova, A.L., Plazmennye poroshkovye pokrytiya (Plasma Powder Coatings), Kiev: Tekhnika, 1986.

    Google Scholar 

  101. Thorpe, R.J. and Thorpe, M.L., in Proc. 5th National Thermal Spray Conf. and Exposition on Thermal Spray Technology (NTSC 93), Anaheim, CA 1993, p. 199.

    Google Scholar 

  102. Fincke, J.R., Swank, W.D., and Haggard, D.C., in Proc. 7th National Thermal Spray Conf.—Thermal Spray Industrial Applications, Boston, MA 1994, p. 325.

    Google Scholar 

  103. Guo, Y., Koga, G.Y., Moreira, J.A., Savoie, S., Schulz, R., Kiminami, C.S., Bolfarini, C., and Botta, W.J., Mater. Des. 2016, vol. 111, p. 608.

    Article  Google Scholar 

  104. Shorshorov, M.Kh. and Kharlamov, Yu.A., Fizikokhimicheskie osnovy detonatsionno-gazovogo napyleniya pokrytii (Physicochemical Bases of Detonation-Gas Spraying of Coatings), Moscow: Nauka, 1978.

    Google Scholar 

  105. Bartenev, S.S., Fed’ko, Yu.P., and Grigorov, A.I., Detonatsionnye pokrytiya v mashinostroenii (Detonation Coatings in Mechanical Engineering), Lenindgrad: Mashinostroenie 1982.

    Google Scholar 

  106. Alkhimov, A.P., Kosarev, V.F., and Papyrin, A.N., Dokl. Akad. Nauk SSSR 1990, vol. 315, p. 1062.

    Google Scholar 

  107. Alkhimov, A.P., Gulidov, A.I., Kosarev, V.F., and Nesterovich, N.I., J. Appl. Mech. Tech. Phys., 2000, vol. 41, no. 1, p. 188.

    Article  ADS  MathSciNet  Google Scholar 

  108. Alkhimov, A.P., Kosarev, V.F., and Klinkov, S.V., J. Therm. Spray Technol., 2001, vol. 10, no. 2, p. 375.

    Article  ADS  Google Scholar 

  109. Alkhimov, A.P., Klinkov, S.V., Kosarev, V.F., and Fomin, V.M., Kholodnoe gazodinamicheskoe napylenie. Teoriya i praktika (Cold Gasdynamic Sputtering: Theory and Practice), Moscow: Fizmatlit 2010.

    Google Scholar 

  110. Ice Accretion Simulation, AGARD-AR-344, 1997.

  111. Aircraft Icing Handbook, Civil Aviation Authority of New Zealand, 2000.

  112. Fortin, G., Ilinca, A., Laforte, J.-L., and Brandi, V., J. Aircr., 2004, vol. 41, no. 1, p. 119.

    Article  Google Scholar 

  113. Alekseenko, S.V. and Prihod’ko, A.A., Uch. Zap. TsAGI 2013, vol. 44, no. 6, p. 25.

    Google Scholar 

  114. Amelyushkin, I.A., Grinats, E.S., and Stasenko, A.L., Vestn. Mosk. Gos. Obl. Univ., Ser. Fiz.-Mat. 2012, no. 2, p. 153.

    Google Scholar 

  115. Grinats, E.S., Miller, A.B., Potapov, Yu. F., and Stasenko, A.L., Vestn. Mosk. Gos. Obl. Univ., Ser. Fiz.- Mat. 2013, no. 3, p. 84.

    Google Scholar 

  116. Vasilevskii, E.B., Osiptsov, A.N., Chirikhin, A.V., and Yakovleva, L.V., J. Eng. Phys. Thermophys., 2001, vol. 74, no. 6, p. 1399.

    Article  Google Scholar 

  117. Molleson, G.V. and Stasenko, A.L., High Temp. 2012, vol. 50, no. 6, p. 755.

    Article  Google Scholar 

  118. Molleson, G.V. and Stasenko, A.L., High Temp. 2015, vol. 53, no. 6, p. 855.

    Article  Google Scholar 

  119. Reviznikov, D.L., Sposobin, A.V., and Sukharev, T.Yu., High Temp. 2017, vol. 55, no. 3, p. 400.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Varaksin.

Additional information

Original Russian Text © A.Yu. Varaksin, 2018, published in Teplofizika Vysokikh Temperatur, 2018, Vol. 56, No. 2, pp. 282–305.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varaksin, A.Y. Gas-Solid Flows Past Bodies. High Temp 56, 275–295 (2018). https://doi.org/10.1134/S0018151X18020220

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18020220

Navigation