High Temperature

, Volume 56, Issue 2, pp 157–161 | Cite as

Method for the Calculation of the Electric Field near a Paraboloidal Metal Tip above a Conducting Plane

Plasma Investigations
  • 6 Downloads

Abstract

A theoretical method for the determination of an electric field near a paraboloidal metal (conducting) tip has been proposed. The accuracy of the proposed numerical solution has been analyzed. The dependence of the electric field strength at the tip vertex on the distance to the plane, which is applicable for predicting fields in various physical problems and engineering calculations, has been considered. The characteristic spatial distributions of the electric potential and field are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raizer, Yu.I., Fizika gazovogo razryada (Physics of Gas Discharge), Moscow: Nauka, 1987.Google Scholar
  2. 2.
    Belevtsev, A.A., High Temp. 2015, vol. 53, no. 6, p. 779.CrossRefGoogle Scholar
  3. 3.
    Vorob’ev, V.S., Malyshenko, S.P., and Petrin, A.B., High Temp. 2006, vol. 44, no. 6. p. 887.CrossRefGoogle Scholar
  4. 4.
    Langelüddecke, L., Singh, P., and Deckert, V., Appl. Spectrosc. 2015, vol. 69, p. 1357.ADSCrossRefGoogle Scholar
  5. 5.
    Deckert, V., Deckert-Gaudig, T., Diegel, M., et al., Faraday Discuss. 2015, vol. 177, p. 9.ADSCrossRefGoogle Scholar
  6. 6.
    Stoll, E., Baratoff, A., Selloni, A., and Carnevali, P., J. Phys. C: Solid State Phys., 1984, vol. 17, p. 3073.ADSCrossRefGoogle Scholar
  7. 7.
    Hawkes, P.W. and Kasper, E., Principles of Electron Optics, Amsterdam: Elsevier, 1989, vols. 1 and 2.Google Scholar
  8. 8.
    Hafner, Ch., The Generalized Multiple Technique for Computational Electromagnetics, Boston: Artech, 1990.Google Scholar
  9. 9.
    Petrin, A.B., High Temp. 2010, vol. 48, no. 3, p. 305.CrossRefGoogle Scholar
  10. 10.
    Petrin, A.B., Plasma Phys. Rep. 2010, vol. 36, no. 7, p. 627.ADSCrossRefGoogle Scholar
  11. 11.
    Passian, A., Ritchie, R.H., Lereu, A.L., Thundat, T., and Ferrell, T.L., Phys. Rev. B: Condens. Matter Mater. Phys. 2005, vol. 71, 115425.ADSCrossRefGoogle Scholar
  12. 12.
    Petrin, A.B., Quantum Electron. 2016, vol. 46, no. 9, p. 848.ADSCrossRefGoogle Scholar
  13. 13.
    Angot, A., Compléments de Mathematiques à l’usage des ingénieurs de Électrotechnique et des Télécommunications, Paris: Ed. Revue d’Optique, 1957.Google Scholar
  14. 14.
    Petrin, A.B., Usp. Prikl. Fiz. 2015, vol. 3, no. 3, p. 236.Google Scholar
  15. 15.
    Petrin, A.B., Quantum Electron. 2015, vol. 45, no. 7, p. 658.ADSCrossRefGoogle Scholar
  16. 16.
    Nikiforov, A.F. and Uvarov, V.B., Spetsial’nye funktsii matematicheskoi fiziki (Special Functions of Mathematical Physics), Moscow: Nauka, 1984.MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations