Skip to main content
Log in

Microwave Heating of an Emulsion Drop

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

The results of numerical modeling of the microwave heating of a water-in-oil emulsion drop in a gravity field with consideration of the empirical temperature dependence of the viscosity of the liquid surrounding the drop are presented. The system of thermal convection equations is considered in the Boussinesq approximation. The solution is obtained by the control volume method with the SIMPLE algorithm and by the VOF method. It is established that the emerging convective structures result in nonuniform heating of the drop predominantly near the surface, which can lead to a local rupture of the armor envelope and the formation of fine-dispersed phase. It is shown that there is an optimal range of power of microwave field in which an intensive deposition of water drops occurs, which leads to water-oil emulsion breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kovaleva, L.A., Zinnatullin, R.R., Mullayanov, A.I., and Shrubkovskii, I.I., High Temp. 2016, vol. 54, no. 4, p. 612.

    Article  Google Scholar 

  2. Kovaleva, L.A., Zinnatullin, R.R., Mullayanov, A.I., and Amekachev, R.M., High Temp. 2015, vol. 53, no. 4, p. 592.

    Article  Google Scholar 

  3. Kovaleva, L.A., Minnigalimov, R.Z., and Zinnatullin, R.R., Energy Fuels 2011, vol. 25, no. 8, p. 3731.

    Article  Google Scholar 

  4. Kovaleva, L.A., Minnigalimov, R.Z., and Zinnatullin, R.R., High Temp. 2008, vol. 46, no. 5, p. 728.

    Article  Google Scholar 

  5. Fang, C.S. and Lai, M.C., in Proc. 14th National Industrial Energy Technology Conf., Houston, TX 1992, p. 125.

    Google Scholar 

  6. Abdurahman, H.N., Rosli, M.Y., and Azhary, H.N., World Acad. Sci., Eng. Technol. 2010, vol. 62, p. 188.

    Google Scholar 

  7. Kovaleva, L.A., Zinnatullin, R.R., Mullayanov, A.I., Mavletov, M.V., and Blagochinnov, V.N., High Temp. 2013, vol. 51, no. 6, p. 870.

    Article  Google Scholar 

  8. Kovaleva, L.A., Zinnatullin, R.R., Minnigalimov, R.Z., Blagochinnov, V.N., and Mullayanov, A.I., Neftepromyslovoe Delo 2013, no. 6, p. 45.

    Google Scholar 

  9. Anfinogentov, V.I., Doctoral (Eng.) Dissertation, Kazan: Kazan State Tech. Univ., 2006.

    Google Scholar 

  10. Malai, N.V., Shchukin, E.R., Stukalov, A.A., and Ryazanov, K.S., J. Appl. Mech. Tech. Phys., 2008, vol. 49, no. 1, p. 58.

    Article  ADS  Google Scholar 

  11. Malai, N.V., Tech. Phys. 2002, vol. 47, no. 3, p. 286.

    Article  Google Scholar 

  12. Krivlev, M. and Fransaer, Ya., Vestn. Udmurt. Univ., Fiz. Khim. 2009, no. 1, p. 43.

    Google Scholar 

  13. Gershuni, G.Z. and Zhukhovitskii, E.M., Konvektivnaya ustoichivost’ neszhimaemoi zhidkosti (Convective Stability of Incompressible Fluid), Moscow: Nauka, 1972.

    Google Scholar 

  14. Brackbill, J.U., Kothe, D.B., and Zemach, C., J. Comput. Phys., 1992, vol. 100, p. 335.

    Article  ADS  MathSciNet  Google Scholar 

  15. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika (Theoretical Physics), vol. 8: Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Fizmatlit 2001.

    MATH  Google Scholar 

  16. Conte, S.D., Elementary Numerical Analysis: An Algorithmic Approach, New York: McGraw-Hill, 1972.

    MATH  Google Scholar 

  17. Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., and Zaleski, St., J. Comput. Phys., 1999, vol. 152, p. 423.

    Article  ADS  Google Scholar 

  18. Hirt, C.W. and Nichols, B.D., J. Comput. Phys., 1981, vol. 39, p. 201.

    Article  ADS  Google Scholar 

  19. Martinez, J.-M., Chesneau, X., and Zeghmati, B., Comput. Mech. 2006, vol. 37, p. 182.

    Article  Google Scholar 

  20. Harlow, F.H., Phys. Fluids 1965, vol. 8, p. 2182.

    Article  ADS  MathSciNet  Google Scholar 

  21. Patankar, S., Numerical Heat Transfer and Fluid Flow, New York: McGraw Hill, 1980.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Musin.

Additional information

Original Russian Text © L.A. Kovaleva, A.A. Musin, Yu.I. Fatkhullina, 2018, published in Teplofizika Vysokikh Temperatur, 2018, Vol. 56, No. 2, pp. 247–252.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovaleva, L.A., Musin, A.A. & Fatkhullina, Y.I. Microwave Heating of an Emulsion Drop. High Temp 56, 234–238 (2018). https://doi.org/10.1134/S0018151X18020141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18020141

Navigation