Skip to main content
Log in

Viscosity of Cobalt Melt: Experiment, Simulation, and Theory

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

The results of experimental measurements, molecular dynamics simulation, and theoretical calculations of the viscosity of a cobalt melt in a temperature range of 1400–2000 K at a pressure p = 1.5 bar corresponding to an overcooled melt at temperatures of 1400–1768 K and an equilibrium melt with temperatures from the range 1768–2000 K are presented. Theoretical expressions for the spectral density of the timedependent correlation function of the stress tensor \(\tilde S\) (ω) and kinematic viscosity ν determined from the frequency and thermodynamic parameters of the system are obtained. The temperature dependences of the kinematic viscosity for the cobalt melt are determined experimentally by the torsional oscillation method; numerically, based on molecular simulation data with the EAM potential via subsequent analysis of the time correlation functions of the transverse current in the framework of generalized hydrodynamics; and by the integral Kubo–Green relation; they were also determined theoretically with the Zwanzig–Mori memory functions formalism using a self-consistent approach. Good agreement was found between the results of theoretical calculations for the temperature dependence of the kinematic viscosity of the cobalt melt using experimental data and the molecular dynamics simulation results. From an analysis of the temperature dependence of the viscosity, we obtain an activation energy of E = (5.38 ± 0.02) ×10–20 J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sarkisov, G.N., Phys.—Usp. 2002, vol. 45, no. 6, p. 597.

    Article  ADS  Google Scholar 

  2. Angell, C.A., Ngai, K.L., McKenna, G.B., McMillan, P.F., and Martin, S.W., J. Appl. Phys., 2000, vol. 88, no. 6, p. 3113.

    Article  ADS  Google Scholar 

  3. Götze, W., Complex Dynamics of Glass-Forming Liquids, Oxford: Oxford Univ. Press, 2009.

    MATH  Google Scholar 

  4. Trachenko, K. and Brazhkin, V.V., Rep. Prog. Phys. 2016, vol. 79, no. 1, 016502.

    Article  ADS  Google Scholar 

  5. Angell, C.A., Science 1995, vol. 267, no. 5206, p. 1924.

    Article  ADS  Google Scholar 

  6. Inoue, A., Acta Mater. 2000, vol. 48, no. 1, p. 279.

    Article  Google Scholar 

  7. Waseda, Y., The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids, New York: McGraw-Hill, 1980.

    Google Scholar 

  8. Iida, T. and Guthrie, R.I.L., The Physical Properties of Liquid Metals, Oxford: Clarendon, 1993.

    Google Scholar 

  9. Khusnutdinoff, R.M., Mokshin, A.V., and Khadeev, I.I., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2014, vol. 8, no. 1, p. 84.

    Article  Google Scholar 

  10. Khusnutdinoff, R.M., Mokshin, A.V., Klumov, B.A., Ryltsev, R.E., and Chtchelkachev, N.M., JETP, 2016, vol. 123, no. 4, p. 735.

    Article  ADS  Google Scholar 

  11. Nishiyama, N. and Inoue, A., Acta Mater. 1999, vol. 47, no. 5, p. 1487.

    Article  Google Scholar 

  12. Khusnutdinoff, R.M. and Mokshin, A.V., Bull. Russ. Acad. Sci.: Phys. 2010, vol. 74, no. 5, p. 640.

    Article  Google Scholar 

  13. Kuiying, C., Hongbo, L., Xiaoping, L., Qiyong, H., and Zhuangqi, H., J. Phys.: Condens. Matter, 1995, vol. 7, no. 12, p. 2379.

    ADS  Google Scholar 

  14. Chen, H.C. and Lai, S.K., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 1997, vol. 56, no. 4, p. 4381.

    Article  Google Scholar 

  15. Cherne, F.J., Baskes, M.I., Schwarz, R.B., Srinivasan, S.G., and Klein, W., Model. Simul. Mater. Sci. Eng. 2004, vol. 12, no. 6, p. 1063.

    Article  ADS  Google Scholar 

  16. Kim, T.H. and Kelton, K.F., J. Chem. Phys., 2007, vol. 126, no. 5, 054513.

    Article  ADS  Google Scholar 

  17. Cao, Q.-L., Huang, D.-H., Yang, J.-S., Wan, M.-J., and Wang, F.-H., Phys. B (Amsterdam, Neth.) 2014, vol. 450, p. 136.

    Article  ADS  Google Scholar 

  18. Evteev, A.V., Kosilov, A.T., Levchenko, E.V., and Logachev, O.B., Phys. Solid State 2006, vol. 48, no. 5, p. 815.

    Article  ADS  Google Scholar 

  19. Mokshin, A.V., Khusnutdinoff, R.M., Novikov, A.G., Blagoveshchenskii, N.M., and Puchkov, A.V., JETP, 2015, vol. 121, no. 5, p. 828.

    Article  ADS  Google Scholar 

  20. March, N.H., Liquid Metals: Concepts and Theory, Cambridge: Cambridge University Press, 1990.

    Book  Google Scholar 

  21. Scopigno, T., Ruocco, G., and Sette, F., Rev. Mod. Phys. 2005, vol. 77, no. 3, p. 881.

    Article  ADS  Google Scholar 

  22. Assael, M.J., Armyra, I.J., Brillo, J., Stankus, S.V., Wu, J., and Wakeham, W.A., J. Phys. Chem. Ref. Data, 2012, vol. 41, no. 3, 033101.

    Article  ADS  Google Scholar 

  23. Shvidkovskii, E.G., Nekotorye voprosy vyazkosti rasplavlennykh metallov (Some Issues of the Viscosity of Molten Metals), Moscow: Gostekhizdat, 1955.

    Google Scholar 

  24. Bel’tyukov, A.L. and Lad’yanov, V.I., Instrum. Exp. Tech. 2008, vol. 51, no. 2, p. 304.

    Article  Google Scholar 

  25. Goncharov, O.Yu., Olyanina, N.V., Bel’tyukov, A.L., and Lad’yanov, V.I., Russ. J. Phys. Chem. A 2015, vol. 89, no. 5, p. 842.

    Article  Google Scholar 

  26. Samsonov, G.V., Borisova, A.L., Zhidkova, T.G., et al., Fiziko-khimicheskie svoistva okislov (Physical and Chemical Properties of Oxides), Moscow: Metallurgiya 1978.

    Google Scholar 

  27. Bel’tyukov, A.L., Lad’yanov, V.I., and Shishmarin, A.I., High Temp. 2014, vol. 52, no. 2, p. 185.

    Article  Google Scholar 

  28. Passianot, R. and Savino, E.J., Phys. Rev. B: Condens. Matter Mater. Phys. 1992, vol. 45, no. 22, p. 12704.

    Article  ADS  Google Scholar 

  29. Khusnutdinov, R.M., Mokshin, A.V., and Yul’met’ev, R.M., JETP, 2009, vol. 108, no. 3, p. 417.

    Article  ADS  Google Scholar 

  30. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford: Clarendon, 1987.

    MATH  Google Scholar 

  31. Khusnutdinoff, R.M. and Mokshin, A.V., J. Non-Cryst. Solids, 2011, vol. 357, no. 7, p. 1677.

    Article  ADS  Google Scholar 

  32. Frenkel’, Ya.I., Kineticheskaya teoriya zhidkostei (Kinetic Theory of Liquids), Leningrad: Nauka, 1975.

    Google Scholar 

  33. Khusnutdinoff, R.M. and Mokshin, A.V., Phys. A (Amsterdam, Neth.) 2012, vol. 391, no. 9, p. 2842.

    Article  ADS  Google Scholar 

  34. Pun, G.P.P. and Mishin, Y., Phys. Rev. B: Condens. Matter Mater. Phys. 2012, vol. 86, no. 13, 134116.

    Article  ADS  Google Scholar 

  35. Einstein, A., Investigation on the Theory of the Brownian Movement, New York: Dover, 1926.

    MATH  Google Scholar 

  36. Copley, J.R.D. and Lovesey, S.W., Rep. Prog. Phys. 1975, vol. 38, no. 4, p. 461.

    Article  ADS  Google Scholar 

  37. Hansen, J.P. and McDonald, I.R., Theory of Simple Liquids, New York: Academic, 2006.

    MATH  Google Scholar 

  38. Gaskell, T., Balucani, U., Gori, M., and Vallauri, R., Phys. Scr. 1987, vol. 35, no. 1, p. 37.

    Article  ADS  Google Scholar 

  39. Khusnutdinoff, R.M., Mokshin, A.V., Menshikova, S.G., Beltyukov, A.L., and Ladyanov, V.I., JETP, 2016, vol. 122, no. 5, p. 859.

    Article  ADS  Google Scholar 

  40. Montfrooij, W. and de Schepper, I., Excitations in Simple Liquids, Liquid Metals, and Superfluids, New York: Oxford University Press, 2010.

    Google Scholar 

  41. Khusnutdinoff, R.M. and Mokshin, A.V., JETP Lett., 2014, vol. 100, no. 1, p. 39.

    Article  ADS  Google Scholar 

  42. Alley, W.E. and Alder, B.J., Phys. Rev. A: At., Mol., Opt. Phys. 1983, vol. 27, no. 6, p. 3158.

    Article  ADS  Google Scholar 

  43. Boon, J.P. and Yip, S., Molecular Hydrodynamics, New York: McGraw-Hill, 1980.

    Google Scholar 

  44. Balucani, U. and Zoppi, M., Dynamics of the Liquid State, Oxford: Clarendon, 1994.

    Google Scholar 

  45. Forster, D., Martin, P.C., and Yip, S., Phys. Rev. 1968, vol. 170, no. 1, p. 155.

    Article  ADS  Google Scholar 

  46. Mokshin, A.V., Chvanova, A.V., and Khusnutdinoff, R.M., Theor. Math. Phys. 2012, vol. 171, no. 1, p. 541.

    Article  Google Scholar 

  47. Tankeshwar, K., Pathak, K.N., and Ranganathan, S., J. Phys. C: Solid State Phys., 1988, vol. 21, no. 19, p. 3607.

    Article  ADS  Google Scholar 

  48. Mokshin, A.V., Yulmetyev, R.M., Khusnutdinov, R.M., and Hänggi, P., JETP, 2006, vol. 103, no. 6, p. 841.

    Article  ADS  Google Scholar 

  49. Zwanzig, R., Phys. Rev. 1961, vol. 124, no. 4, p. 983.

    Article  ADS  Google Scholar 

  50. Mori, H., Prog. Theor. Phys. 1965, vol. 33, no. 3, p. 423.

    Article  ADS  Google Scholar 

  51. Yulmetyev, R.M., Mokshin, A.V., and Hänggi, P., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2003, vol. 68, no. 5, 051201.

    Article  ADS  Google Scholar 

  52. Mokshin, A.V., Yulmetyev, R.M., and Hänggi, P., New J. Phys. 2005, vol. 7, p. 9.

    Article  Google Scholar 

  53. CRC Handbook of Chemistry and Physics, Lide, D.R., Ed., Boca Raton: CRC, 2008–2009, 89th ed.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Khusnutdinoff.

Additional information

Original Russian Text © R.M. Khusnutdinoff, A.V. Mokshin, A.L. Bel’tyukov, N.V. Olyanina, 2018, published in Teplofizika Vysokikh Temperatur, 2018, Vol. 56, No. 2, pp. 211–218.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khusnutdinoff, R.M., Mokshin, A.V., Bel’tyukov, A.L. et al. Viscosity of Cobalt Melt: Experiment, Simulation, and Theory. High Temp 56, 201–207 (2018). https://doi.org/10.1134/S0018151X18020128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18020128

Navigation