Advertisement

High Temperature

, Volume 56, Issue 2, pp 201–207 | Cite as

Viscosity of Cobalt Melt: Experiment, Simulation, and Theory

  • R. M. Khusnutdinoff
  • A. V. Mokshin
  • A. L. Bel’tyukov
  • N. V. Olyanina
Thermophysical Properties of Materials

Abstract

The results of experimental measurements, molecular dynamics simulation, and theoretical calculations of the viscosity of a cobalt melt in a temperature range of 1400–2000 K at a pressure p = 1.5 bar corresponding to an overcooled melt at temperatures of 1400–1768 K and an equilibrium melt with temperatures from the range 1768–2000 K are presented. Theoretical expressions for the spectral density of the timedependent correlation function of the stress tensor \(\tilde S\) (ω) and kinematic viscosity ν determined from the frequency and thermodynamic parameters of the system are obtained. The temperature dependences of the kinematic viscosity for the cobalt melt are determined experimentally by the torsional oscillation method; numerically, based on molecular simulation data with the EAM potential via subsequent analysis of the time correlation functions of the transverse current in the framework of generalized hydrodynamics; and by the integral Kubo–Green relation; they were also determined theoretically with the Zwanzig–Mori memory functions formalism using a self-consistent approach. Good agreement was found between the results of theoretical calculations for the temperature dependence of the kinematic viscosity of the cobalt melt using experimental data and the molecular dynamics simulation results. From an analysis of the temperature dependence of the viscosity, we obtain an activation energy of E = (5.38 ± 0.02) ×10–20 J.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sarkisov, G.N., Phys.—Usp. 2002, vol. 45, no. 6, p. 597.ADSCrossRefGoogle Scholar
  2. 2.
    Angell, C.A., Ngai, K.L., McKenna, G.B., McMillan, P.F., and Martin, S.W., J. Appl. Phys., 2000, vol. 88, no. 6, p. 3113.ADSCrossRefGoogle Scholar
  3. 3.
    Götze, W., Complex Dynamics of Glass-Forming Liquids, Oxford: Oxford Univ. Press, 2009.zbMATHGoogle Scholar
  4. 4.
    Trachenko, K. and Brazhkin, V.V., Rep. Prog. Phys. 2016, vol. 79, no. 1, 016502.ADSCrossRefGoogle Scholar
  5. 5.
    Angell, C.A., Science 1995, vol. 267, no. 5206, p. 1924.ADSCrossRefGoogle Scholar
  6. 6.
    Inoue, A., Acta Mater. 2000, vol. 48, no. 1, p. 279.CrossRefGoogle Scholar
  7. 7.
    Waseda, Y., The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids, New York: McGraw-Hill, 1980.Google Scholar
  8. 8.
    Iida, T. and Guthrie, R.I.L., The Physical Properties of Liquid Metals, Oxford: Clarendon, 1993.Google Scholar
  9. 9.
    Khusnutdinoff, R.M., Mokshin, A.V., and Khadeev, I.I., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2014, vol. 8, no. 1, p. 84.CrossRefGoogle Scholar
  10. 10.
    Khusnutdinoff, R.M., Mokshin, A.V., Klumov, B.A., Ryltsev, R.E., and Chtchelkachev, N.M., JETP, 2016, vol. 123, no. 4, p. 735.ADSCrossRefGoogle Scholar
  11. 11.
    Nishiyama, N. and Inoue, A., Acta Mater. 1999, vol. 47, no. 5, p. 1487.CrossRefGoogle Scholar
  12. 12.
    Khusnutdinoff, R.M. and Mokshin, A.V., Bull. Russ. Acad. Sci.: Phys. 2010, vol. 74, no. 5, p. 640.CrossRefGoogle Scholar
  13. 13.
    Kuiying, C., Hongbo, L., Xiaoping, L., Qiyong, H., and Zhuangqi, H., J. Phys.: Condens. Matter, 1995, vol. 7, no. 12, p. 2379.ADSGoogle Scholar
  14. 14.
    Chen, H.C. and Lai, S.K., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 1997, vol. 56, no. 4, p. 4381.CrossRefGoogle Scholar
  15. 15.
    Cherne, F.J., Baskes, M.I., Schwarz, R.B., Srinivasan, S.G., and Klein, W., Model. Simul. Mater. Sci. Eng. 2004, vol. 12, no. 6, p. 1063.ADSCrossRefGoogle Scholar
  16. 16.
    Kim, T.H. and Kelton, K.F., J. Chem. Phys., 2007, vol. 126, no. 5, 054513.ADSCrossRefGoogle Scholar
  17. 17.
    Cao, Q.-L., Huang, D.-H., Yang, J.-S., Wan, M.-J., and Wang, F.-H., Phys. B (Amsterdam, Neth.) 2014, vol. 450, p. 136.ADSCrossRefGoogle Scholar
  18. 18.
    Evteev, A.V., Kosilov, A.T., Levchenko, E.V., and Logachev, O.B., Phys. Solid State 2006, vol. 48, no. 5, p. 815.ADSCrossRefGoogle Scholar
  19. 19.
    Mokshin, A.V., Khusnutdinoff, R.M., Novikov, A.G., Blagoveshchenskii, N.M., and Puchkov, A.V., JETP, 2015, vol. 121, no. 5, p. 828.ADSCrossRefGoogle Scholar
  20. 20.
    March, N.H., Liquid Metals: Concepts and Theory, Cambridge: Cambridge University Press, 1990.CrossRefGoogle Scholar
  21. 21.
    Scopigno, T., Ruocco, G., and Sette, F., Rev. Mod. Phys. 2005, vol. 77, no. 3, p. 881.ADSCrossRefGoogle Scholar
  22. 22.
    Assael, M.J., Armyra, I.J., Brillo, J., Stankus, S.V., Wu, J., and Wakeham, W.A., J. Phys. Chem. Ref. Data, 2012, vol. 41, no. 3, 033101.ADSCrossRefGoogle Scholar
  23. 23.
    Shvidkovskii, E.G., Nekotorye voprosy vyazkosti rasplavlennykh metallov (Some Issues of the Viscosity of Molten Metals), Moscow: Gostekhizdat, 1955.Google Scholar
  24. 24.
    Bel’tyukov, A.L. and Lad’yanov, V.I., Instrum. Exp. Tech. 2008, vol. 51, no. 2, p. 304.CrossRefGoogle Scholar
  25. 25.
    Goncharov, O.Yu., Olyanina, N.V., Bel’tyukov, A.L., and Lad’yanov, V.I., Russ. J. Phys. Chem. A 2015, vol. 89, no. 5, p. 842.CrossRefGoogle Scholar
  26. 26.
    Samsonov, G.V., Borisova, A.L., Zhidkova, T.G., et al., Fiziko-khimicheskie svoistva okislov (Physical and Chemical Properties of Oxides), Moscow: Metallurgiya 1978.Google Scholar
  27. 27.
    Bel’tyukov, A.L., Lad’yanov, V.I., and Shishmarin, A.I., High Temp. 2014, vol. 52, no. 2, p. 185.CrossRefGoogle Scholar
  28. 28.
    Passianot, R. and Savino, E.J., Phys. Rev. B: Condens. Matter Mater. Phys. 1992, vol. 45, no. 22, p. 12704.ADSCrossRefGoogle Scholar
  29. 29.
    Khusnutdinov, R.M., Mokshin, A.V., and Yul’met’ev, R.M., JETP, 2009, vol. 108, no. 3, p. 417.ADSCrossRefGoogle Scholar
  30. 30.
    Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford: Clarendon, 1987.zbMATHGoogle Scholar
  31. 31.
    Khusnutdinoff, R.M. and Mokshin, A.V., J. Non-Cryst. Solids, 2011, vol. 357, no. 7, p. 1677.ADSCrossRefGoogle Scholar
  32. 32.
    Frenkel’, Ya.I., Kineticheskaya teoriya zhidkostei (Kinetic Theory of Liquids), Leningrad: Nauka, 1975.Google Scholar
  33. 33.
    Khusnutdinoff, R.M. and Mokshin, A.V., Phys. A (Amsterdam, Neth.) 2012, vol. 391, no. 9, p. 2842.ADSCrossRefGoogle Scholar
  34. 34.
    Pun, G.P.P. and Mishin, Y., Phys. Rev. B: Condens. Matter Mater. Phys. 2012, vol. 86, no. 13, 134116.ADSCrossRefGoogle Scholar
  35. 35.
    Einstein, A., Investigation on the Theory of the Brownian Movement, New York: Dover, 1926.zbMATHGoogle Scholar
  36. 36.
    Copley, J.R.D. and Lovesey, S.W., Rep. Prog. Phys. 1975, vol. 38, no. 4, p. 461.ADSCrossRefGoogle Scholar
  37. 37.
    Hansen, J.P. and McDonald, I.R., Theory of Simple Liquids, New York: Academic, 2006.zbMATHGoogle Scholar
  38. 38.
    Gaskell, T., Balucani, U., Gori, M., and Vallauri, R., Phys. Scr. 1987, vol. 35, no. 1, p. 37.ADSCrossRefGoogle Scholar
  39. 39.
    Khusnutdinoff, R.M., Mokshin, A.V., Menshikova, S.G., Beltyukov, A.L., and Ladyanov, V.I., JETP, 2016, vol. 122, no. 5, p. 859.ADSCrossRefGoogle Scholar
  40. 40.
    Montfrooij, W. and de Schepper, I., Excitations in Simple Liquids, Liquid Metals, and Superfluids, New York: Oxford University Press, 2010.Google Scholar
  41. 41.
    Khusnutdinoff, R.M. and Mokshin, A.V., JETP Lett., 2014, vol. 100, no. 1, p. 39.ADSCrossRefGoogle Scholar
  42. 42.
    Alley, W.E. and Alder, B.J., Phys. Rev. A: At., Mol., Opt. Phys. 1983, vol. 27, no. 6, p. 3158.ADSCrossRefGoogle Scholar
  43. 43.
    Boon, J.P. and Yip, S., Molecular Hydrodynamics, New York: McGraw-Hill, 1980.Google Scholar
  44. 44.
    Balucani, U. and Zoppi, M., Dynamics of the Liquid State, Oxford: Clarendon, 1994.Google Scholar
  45. 45.
    Forster, D., Martin, P.C., and Yip, S., Phys. Rev. 1968, vol. 170, no. 1, p. 155.ADSCrossRefGoogle Scholar
  46. 46.
    Mokshin, A.V., Chvanova, A.V., and Khusnutdinoff, R.M., Theor. Math. Phys. 2012, vol. 171, no. 1, p. 541.CrossRefGoogle Scholar
  47. 47.
    Tankeshwar, K., Pathak, K.N., and Ranganathan, S., J. Phys. C: Solid State Phys., 1988, vol. 21, no. 19, p. 3607.ADSCrossRefGoogle Scholar
  48. 48.
    Mokshin, A.V., Yulmetyev, R.M., Khusnutdinov, R.M., and Hänggi, P., JETP, 2006, vol. 103, no. 6, p. 841.ADSCrossRefGoogle Scholar
  49. 49.
    Zwanzig, R., Phys. Rev. 1961, vol. 124, no. 4, p. 983.ADSCrossRefGoogle Scholar
  50. 50.
    Mori, H., Prog. Theor. Phys. 1965, vol. 33, no. 3, p. 423.ADSCrossRefGoogle Scholar
  51. 51.
    Yulmetyev, R.M., Mokshin, A.V., and Hänggi, P., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2003, vol. 68, no. 5, 051201.ADSCrossRefGoogle Scholar
  52. 52.
    Mokshin, A.V., Yulmetyev, R.M., and Hänggi, P., New J. Phys. 2005, vol. 7, p. 9.CrossRefGoogle Scholar
  53. 53.
    CRC Handbook of Chemistry and Physics, Lide, D.R., Ed., Boca Raton: CRC, 2008–2009, 89th ed.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • R. M. Khusnutdinoff
    • 1
  • A. V. Mokshin
    • 1
  • A. L. Bel’tyukov
    • 2
  • N. V. Olyanina
    • 2
  1. 1.Kazan Federal UniversityKazanRussia
  2. 2.Physical-Technical InstituteUral Branch of the Russia Academy of SciencesIzhevskRussia

Personalised recommendations