High Temperature

, Volume 56, Issue 2, pp 239–246 | Cite as

Numerical Study of the Effect of Rotation on the Behavior of the Conjugate Heat and Mass Transfer on the Surface of a Spherically Blunted Cone Exposed to a Hypersonic Flow at an Angle of Attack with Ablation from the Surface

  • K. N. Efimov
  • V. A. Ovchinnikov
  • A. S. Yakimov
Heat and Mass Transfer and Physical Gasdynamics


The processes of heating a body in a high-enthalpy spatial flow with allowance for body rotation around its longitudinal axis and ablation of the thermal protection material are studied by means of mathematical simulation. The obtained solution of the problem in conjugate formulation allowed us to take into account the effect of nonisothermic characteristics of the shell on the heat and mass transfer in the boundary layer.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bashkin, V.A. and Reshet’ko, S.M., Uch. Zap. Tsentr. Aerogidrodin. Inst. 1989, vol. 20, no. 5, p. 53.Google Scholar
  2. 2.
    Zinchenko, V.I., Kataev, A.G., and Yakimov, A.S., J. Appl. Mech. Tech. Phys., 1992, vol. 33, no. 6, p. 821.ADSCrossRefGoogle Scholar
  3. 3.
    Zinchenko, V.I. and Yakimov, A.S., J. Appl. Mech. Tech. Phys., 1999, vol. 40, no. 4, p. 607.CrossRefGoogle Scholar
  4. 4.
    Markov, A.A., Fluid Dyn. 1984, vol. 19, no. 3, p. 499.ADSCrossRefGoogle Scholar
  5. 5.
    Krasilov, N.A., Levin, V.A., and Yunitskii, S.A., Fluid Dyn. 1986, vol. 21, no. 1, p. 90.ADSCrossRefGoogle Scholar
  6. 6.
    Zinchenko, V.I., Efimov, K.N., and Yakimov, A.S., High Temp. 2007, vol. 45, no. 5, p. 681.CrossRefGoogle Scholar
  7. 7.
    Grishin, A.M. and Fomin, V.M., Sopryazhennye i nestatsionarnye zadachi mekhaniki reagiruyushchikh sred (Conjugate and Nonstationary Problems of the Mechanics of Reacting Media), Novosibirsk: Nauka, 1984.MATHGoogle Scholar
  8. 8.
    Grishin, A.M. and Zinchenko, V.I., Fluid Dyn. 1974, vol. 9, no. 2, p. 263.ADSCrossRefGoogle Scholar
  9. 9.
    Zinchenko, V.I., Matematicheskoe modelirovanie sopryazhennykh zadach teplomassoobmena (Mathematical Modeling of Coupled Heat and Mass Transfer Problems), Tomsk: Tomsk. Gos. Univ., 1985.MATHGoogle Scholar
  10. 10.
    Shevelev, Yu.D., Trekhmernye zadachi teorii laminarnogo pogranichnogo sloya (Three-Dimensional Problems of the Laminar Boundary Layer Theory), Moscow: Nauka, 1977.Google Scholar
  11. 11.
    Gorskii, V.V. and Zaprivoda, A.V., High Temp. 2014, vol. 52, no. 2, p. 230.CrossRefGoogle Scholar
  12. 12.
    Grishin, A.M., Parashin, A.D., and Yakimov, A.S., Combust., Explos. Shock Waves (Engl. Transl.) 1993, vol. 29, no. 1, p. 82.CrossRefGoogle Scholar
  13. 13.
    Polezhaev, Yu.V. and Yurevich, F.P., Teplovaya zashchita (Thermal Protection), Moscow: Energiya, 1976.Google Scholar
  14. 14.
    Lunev, V.V., Magomedov, K.M., and Pavlov, V.G., Giperzvukovoe obtekanie prituplennykh konusov s uchetom ravnovesnykh fiziko-khimicheskikh prevrashchenii (Hyper- Sound Flow around Blunted Cones with Allowance for Equilibrium Physical and Chemical Transformations), Moscow: Vychisl. Tsentr Akad. Nauk SSSR 1968.Google Scholar
  15. 15.
    Stepanova, E.V. and Yakimov, A.S., High Temp. 2015, vol. 53, no. 2, p. 228.CrossRefGoogle Scholar
  16. 16.
    Patankar, S.V. and Spalding, D.B., Heat and Mass Transfer in Boundary Layers, London: Morgan–Grampian, 1967.MATHGoogle Scholar
  17. 17.
    Cebeci, T., AIAA J., 1970, vol. 8, no. 12, p. 48.CrossRefGoogle Scholar
  18. 18.
    Kovalev, V.L., Geterogennye kataliticheskie protsessy v aerotermodinamike (Heterogeneous Catalytic Processes in Aerothermodynamics), Moscow: Fizmatlit, 2002.Google Scholar
  19. 19.
    Grishin, A.M., Zinchenko, V.I., Efimov, K.N., Subbotin, A.N., and Yakimov, A.S., Iteratsionno-interpolyatsionnyi metod i ego prilozheniya (Iteration–Interpolation Method and Its Applications), Tomsk: Tomsk. Gos. Univ. 2004.Google Scholar
  20. 20.
    Feldhuhn, R.N., Heat transfer from a turbulent boundary layer on a porous hemisphere, AIAA Pap. 76-119, 1976.CrossRefGoogle Scholar
  21. 21.
    Widhopf, G.F. and Hall, R., AIAA J., 1972, vol. 10, p. 1318.ADSCrossRefGoogle Scholar
  22. 22.
    Samarskii, A.A., Vvedenie v teoriyu raznostnykh skhem (Introduction to the Theory of Difference Schemes), Moscow: Nauka, 1971.Google Scholar
  23. 23.
    Gofman, A.G. and Grishin, A.M., J. Appl. Mech. Tech. Phys., 1984, vol. 25, no. 4, p. 598.ADSCrossRefGoogle Scholar
  24. 24.
    Baker, R.L., AIAA J., 1977, vol. 15, p. 1391.ADSCrossRefGoogle Scholar
  25. 25.
    Andrievskii, R.A., Poristye metallokeramicheskie materialy (Porous Metal-Ceramic Materials), Moscow: Metallurgiya, 1964.Google Scholar
  26. 26.
    Buchnev, L.M., Smyslov, A.I., Dmitriev, I.A., et al., Teplofiz. Vys. Temp. 1987, vol. 25, no. 6, p. 1120.Google Scholar
  27. 27.
    Alifanov, O.M., Tryanin, A.P., and Lozhkin, A.L., J. Eng. Phys., 1987, vol. 52, no. 3, p. 340.CrossRefGoogle Scholar
  28. 28.
    Zinov’ev, V.F., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh. Spravochnik (Thermophysical Properties of Metals at High Temperatures: A Reference Book), Moscow: Metallurgiya, 1989.Google Scholar
  29. 29.
    Kurshin, A.P., Tr. Tsentr. Aerogidrodin. Inst. 1984, no. 2230, p. 10.Google Scholar
  30. 30.
    Sosedov, V.P., Svoistva konstruktsionnykh materialov na osnove ugleroda. Spravochnik (Properties of Carbon- Based Structural Materials: A Reference Book), Moscow: Metallurgiya, 1975.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. N. Efimov
    • 1
  • V. A. Ovchinnikov
    • 1
  • A. S. Yakimov
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations