High Temperature

, Volume 56, Issue 2, pp 247–254 | Cite as

The Use of the RANS/ILES Method to Study the Influence of Coflow Wind on the Flow in a Hot, Nonisobaric, Supersonic Airdrome Jet during Its Interaction with the Jet Blast Deflector

  • L. A. Benderskii
  • D. A. Lyubimov
  • A. O. Chestnykh
  • B. M. Shabanov
  • A. A. Rubakov
Heat and Mass Transfer and Physical Gasdynamics
  • 5 Downloads

Abstract

The influence of the coflow wind on the flow in a hot, nonisobaric, supersonic airdrome jet from a biconical nozzle and its interaction with a jet blast deflector (JBD) are studied by the RANS/ILES method. The conditions at the external boundary of the computational domain are formulated for the problem of jet interaction with the JBD. All calculations were performed at the Joint Supercomputer Center of the Russian Academy of Sciences with a MVS-10P supercomputer. The features of method parallelization for the supercomputer with modern architecture are described. The total temperature of the jet at the nozzle output is T0 = 1050 K and πс = 4. The wind velocity ranges from 0 to 20 m/s. Two JBD positions are examined: at distances of 5 and 15De of the nozzle cross section. The computation grids consist of (6.33–8.53) × 106 cells. Fields of the flow parameters and of their turbulent pulsations near the jet are obtained. The dimensions of the “safety zone” for people and machinery is determined by the temperature, pressure pulsations, and velocity near the airdrome surface. The influence of wind velocity on the size and shape of the safety zone are revealed. The distributions of pressure and temperature and their pulsations over JBD altitude are presented as a function of JBD position and wind velocity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Khritov, K.M., Lyubimov, D.A., Maslov, V.P., Mineev, B.I., Secundov, A.N., and Birch, S.F., Threedimensional wall jets: Experiment, theory and application, AIAA Pap. 2002-0732, 2002.Google Scholar
  2. 2.
    Agelin-Chaab, M. and Tachie, M.F., Int. J. Heat Fluid Flow 2011, vol. 32, p. 608.CrossRefGoogle Scholar
  3. 3.
    Davis, M.R. and Winarto, H., J. Fluid Mech., 1980, vol. 101, p. 201.ADSCrossRefGoogle Scholar
  4. 4.
    Ishiko, K., Hasimoto, A., Matsuo, Y., Yoshizawa, A., Nishiyama, Y., and Nakamura, Y., J. Aircr., 2014, vol. 51, no. 2, p. 584.CrossRefGoogle Scholar
  5. 5.
    Benderskii, L.A., Lyubimov, D.A., Potekhina, I.V., and Fedorenko, A.E., Uch. Zap. TsAGI 2016, vol. 47, no. 2, p. 36.Google Scholar
  6. 6.
    Berch, S.F., Lebedev, A.B., Lyubimov, D.A., and Sekundov, A.N., Fluid Dyn. (Engl. Transl.) 2001, vol. 36, no. 5, p. 712.CrossRefGoogle Scholar
  7. 7.
    Lyubimov, D.A., Aeromekh. Gaz. Din. 2003, no. 3, p. 14.Google Scholar
  8. 8.
    Worden, T.J., Gustavsson, J.P.R., Shih, C., and Alvi, F.A., Acoustic measurements of high-temperature supersonic impinging jets in multiple configurations, AIAA Pap. 2013-2187, 2013.CrossRefGoogle Scholar
  9. 9.
    Liu, J., Corrigan, A., Kailasanath, K., Ramammurti, R., Heeb, N., Munday, D., and Gutmark, E., Impact of deck and jet blast deflector on the flow and acoustic properties of imperfectly expanded supersonic jets, AIAA Pap. 2013-323, 2013.Google Scholar
  10. 10.
    Erwin, J.P., Sinha, N., and Rodebaugh, G.P., Noise predictions of a hot twin-jet impinging on a jet blast deflector, AIAA Pap. 2013-324, 2013.Google Scholar
  11. 11.
    Khalighi, Y., Nicholsy, J.W., Lele, S.K., Ham, F., and Moin, P., Unstructured large eddy simulation for prediction of noise issued from turbulent jets in various configurations, AIAA Pap. 2011-2886, 2011.Google Scholar
  12. 12.
    Lyubimov, D.A., High Temp. 2012, vol. 50, no. 3, p. 420.CrossRefGoogle Scholar
  13. 13.
    Benderskii, L.A. and Lyubimov, D.A., Abstracts of Papers, IV Otkrytoi vseros. konf. po aeroakustike (IV Open All-Russia Conf. on Aeroacoustics), Moscow 2015, p. 112.Google Scholar
  14. 14.
    Kuizhi, Y., Liangliang, C., Hu, L., and Yunliang, W., Aerosp. Sci. Technol. 2015, vol. 45, p. 60.CrossRefGoogle Scholar
  15. 15.
    Suresh, A. and Huynh, H.T., J. Comput. Phys., 1997, vol. 136, no. 1, p. 83.ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Spalart, P.R. and Allmaras, S.R., Rech. Aerosp. 1994, no. 1, p. 5.Google Scholar
  17. 17.
    Lyubimov, D.A. and Potekhina, I.V., High Temp. 2016, vol. 54, no. 5, p. 737.CrossRefGoogle Scholar
  18. 18.
    Liu, J., Kailasanath, K., Munday, D., Nick, H., and Gutmark, E., Large-eddy simulations of a supersonic heated jet, AIAA Pap. 2011-2884, 2011.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. A. Benderskii
    • 1
  • D. A. Lyubimov
    • 1
  • A. O. Chestnykh
    • 1
  • B. M. Shabanov
    • 2
  • A. A. Rubakov
    • 2
  1. 1.Central Institute of Aviation MotorsMoscowRussia
  2. 2.Joint Supercomputer CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations