Skip to main content
Log in

The Variational Form of the Mathematical Model of a Thermal Explosion in a Solid Body with Temperature-Dependent Thermal Conductivity

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

The variational form of a mathematical model of a thermal explosion has been developed based on a variational formulation of a nonlinear problem of stationary thermal conductivity in a homogeneous solid body. The model takes the temperature dependence of the thermal conductivity of a solid body into account. The presented example of quantitative analysis of the model demonstrates a method for finding the combination of parameters for determining a thermal explosion in a plate with an exponential temperature dependence of the thermal conductivity. At the same time, the analysis allows one to identify the number of steadystate temperature distributions inside a body whose energy release intensifies with a temperature increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirillov, P.L. and Bogoslovskaya, G.P., Teplomassoobmen v yadernykh energeticheskikh ustanovkakh (Heat and Mass Transfer in Nuclear Power Plants), Moscow: Energoatomizdat, 2000.

    Google Scholar 

  2. Frank-Kamenetskii, D.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1987.

    Google Scholar 

  3. Eliseev, V.N. and Tovstonog, V.A., Teploobmen i teplovye ispytaniya materialov i konstruktsii aerokosmicheskoi tekhniki pri radiatsionnom nagreve (Heat Exchange and Thermal Testing of Materials and Structures of Aerospace Engineering under Radiation Heating), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2014.

    Google Scholar 

  4. Bityukov, V.K., Petrov, V.A., and Smirnov, I.V., High Temp. 2015, vol. 53, no. 1, p. 27.

    Article  Google Scholar 

  5. Formalev, V.F., Kuznetsova, E.L., and Rabinskiy, L.N., High Temp. 2015, vol. 53, no. 4, p. 548.

    Article  Google Scholar 

  6. Izmailova, G.R., Kovaleva, L.A., and Nasyrov, N.M., High Temp. 2016, vol. 54, no. 1, p. 56.

    Article  Google Scholar 

  7. Rubtsov, N.A., Sleptsov, S.D., and Grishin, M.A., High Temp. 2016, vol. 54, no. 2, p. 252.

    Article  Google Scholar 

  8. Zarubin, V.S., Kuvyrkin, G.N., and Savel’eva, I.Yu., J. Eng. Phys. Thermophys., 2014, vol. 87, no. 4, p. 820.

    Article  Google Scholar 

  9. Zarubin, V.S., Kotovich, A.V., and Kuvyrkin, G.N., Izv. Ross. Akad. Nauk, Energ. 2016, no. 1, p. 127.

    Google Scholar 

  10. Fizika vzryva (Physics of Explosion), 2vols., Orlenko, L.P., Ed., Moscow: Fizmatlit 2002, vol. 1.

  11. Zarubin, V.S., Modelirovanie (Simulation), Moscow: Akademiya, 2013.

    Google Scholar 

  12. Zarubin, V.S. and Kuvyrkin, G.N., Mat. Model. Chislennye Metody 2014, no. 1, p. 5.

    Google Scholar 

  13. Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., and Mikhailov, A.P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii (Regimes with Peaking in Problems for Quasilinear Parabolic Equations), Moscow: Nauka 1987.

    Google Scholar 

  14. Zarubin, V.S. and Kuvyrkin, G.N., High Temp. 2003, vol. 41, no. 2, p. 257.

    Article  Google Scholar 

  15. Zarubin, V.S. and Rodikov, A.V., High Temp. 2007, vol. 45, no. 2, p. 243.

    Article  Google Scholar 

  16. Zarubin, V.S. and Selivanov, V.V., Variatsionnye i chislennye metody mekhaniki sploshnoi sredy (Variation and Numerical Methods of Continuum Mechanics), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 1993.

    Google Scholar 

  17. Van’ko, V.I., Ermoshina, O.V., and Kuvyrkin, G.N., Variatsionnoe ischislenie i optimal’noe upravlenie (Variational Calculus and Optimal Control), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana 2001.

    Google Scholar 

  18. Vlasova, E.A., Zarubin, V.S., and Kuvyrkin, G.N., Priblizhennye metody matematicheskoi fiziki (Approximate Methods of Mathematical Physics), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana 2004.

    Google Scholar 

  19. Glagolev, K.V. and Morozov, A.N., Fizicheskaya termodinamika (Physical Thermodynamics), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2007.

    Google Scholar 

  20. Zarubin, V.S., Inzhenernye metody resheniya zadach teploprovodnosti (Engineering Methods for Solving Heat Conduction Problems), Moscow: Energoatomizdat, 1983.

    Google Scholar 

  21. Zarubin, V.S., Ivanova, E.E., and Kuvyrkin, G.N., Integral’noe ischislenie funktsii odnogo peremennogo (Integral Calculus of One Variable Function), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Zarubin.

Additional information

Original Russian Text © V.S. Zarubin, G.N. Kuvyrkin, I.Yu. Savel’eva, 2018, published in Teplofizika Vysokikh Temperatur, 2018, Vol. 56, No. 2, pp. 235–240.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarubin, V.S., Kuvyrkin, G.N. & Savel’eva, I.Y. The Variational Form of the Mathematical Model of a Thermal Explosion in a Solid Body with Temperature-Dependent Thermal Conductivity. High Temp 56, 223–228 (2018). https://doi.org/10.1134/S0018151X18010212

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18010212

Navigation