Skip to main content
Log in

Thermodynamic Modeling of the Composition and Characteristics of Combustion Products of Overrich Liquid Rocket Fluids in the Quenching Mode

  • High Temperature Apparatuses and Structures
  • Published:
High Temperature Aims and scope

Abstract

The working process in the regenerative gas generators of liquid rocket engines is analyzed and a method for computer simulation based on the Zel’dovich’s model of “quenching” the composition of the products of high-temperature combustion as a result of rapid cooling on supplying an excess of the low-temperature component and the resulting chemical quasi-nonequilibrium is developed. The method is implemented and tested on the basis of the TERRA software package in calculations of the composition and properties of the propellant produced by regenerative gas generators using oxygen as the oxidizer and methane as the fuel. The vacuum specific impulse of the considered fuel is calculated for the possible conditions of a quasi-nonequilibrium working process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dobrovol’skii, M.V., Zhidkostnye raketnye dvigateli (Liquid Rocket Engines), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2016.

    Google Scholar 

  2. Belyaev, N.M., Sistemy nadduva toplivnykh bakov raket (Systems of Pressurization of Fuel Tanks of Rockets), Kovtinenko, V.M., Ed., Noscow: Mashinostroenie 1976.

    Google Scholar 

  3. Trusov, B.G., Inzh. Zh.: Nauka Innovatsii 2012, no. 1, p. 21. doi 10.18698/2308-6033-2012-1-31

    Google Scholar 

  4. Burkal’tsev, V.A., Dorofeev, A.A., and Novikov, A.V., Proektnye i poverochnye raschety kamery i gazogeneratora zhidkostnogo raketnogo dvigatelya. Metodicheskie ukazaniya k kursovomu proektirovaniyu (Design and Verification Calculations of Chamber and Gas Generator of a Liquid Rocket Engine: Methodological Guidelines for Course Engineering Design), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana 2007.

    Google Scholar 

  5. Belov, E.A., Bogushev, V.Yu., Klepikov, I.A., et al., Tr. Nauchn.-Proizv. Ob”ed. Energomash im. V.P. Glushko, Moscow 2000, vol. 18, p. 86.

    Google Scholar 

  6. Leontyev, N.I., Kolkin, Ye.N., and Zavyalov, V.S., in Proc. 48th Int. Aerospace Congress, Berlin 2000, p. 23.

    Google Scholar 

  7. Chvanov, V.K., Milovanov, A.G., and Tomalintseva, T.N., Tr. Nauchn.-Proizv. Ob”ed. Energomash im. V.P. Glushko, Moscow 2013, no. 30, p. 25.

    Google Scholar 

  8. Heubner, A.W., High Pressure LOX Hydrocarbon Preburner Injector Investigation, AIAA Pap. 1982-1152, 1982.

    Google Scholar 

  9. Bersh, A.V., Lisitsyn, A.V., Sorokovikov, A.I., et al. High Temp., 2010, vol. 48, no. 6, p. 866.

    Article  Google Scholar 

  10. Zel’dovich, Ya.B., Barenblatt, G.I., Librovich, V.B., and Makhviladze, G.M., Matematicheskaya teoriya goreniya i vzryva (Mathematical Theory of Combustion and Explosion), Moscow: Nauka 1980.

    Google Scholar 

  11. Trusov, B.G., Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Ser. Estestv. Nauki 2005, no. 3, p. 26.

    Google Scholar 

  12. Trusov, B.G. and Malanichev, A.G., in Proc. 3rd Int. Conf. on Chemical Kinetics, Washington 1993, p. 56.

    Google Scholar 

  13. Trusov, B.G. and Malanichev, A.G., Dokl. Ross. Akad. Nauk 1994, vol. 339, no. 6, p. 771.

    Google Scholar 

  14. Thermal Constants of Substances Database, version 2. Electronic analogue of Termicheskie konstanty veshhestv: Spravochnik (Thermal Constants of Substances: A Reference Book), 10vols., Glushko, V.P., Ed., Moscow, 1965–1982. http://www.chem.msu.ru/cgi-bin/tkv.pl? show=welcome.html/welcome.htm.

  15. Belov, G.V., Termodinamicheskoe modelirovanie: metody, algoritmy, programmy (Thermodynamic Simulation: Methods, Algorithms, Programs), Moscow: Nauchnyi Mir 2002.

    Google Scholar 

  16. Nazyrova, R.R. and Ponomarev, N.B., Inzh. Zh.: Nauka Innovatsii, 2013, no. 4. doi 10.18698/2308-6033-2013-4-714

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dorofeev.

Additional information

Original Russian Text © A.A. Dorofeev, D.A. Yagodnikov, 2018, published in Teplofizika Vysokikh Temperatur, 2018, Vol. 56, No. 2, pp. 270–276.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorofeev, A.A., Yagodnikov, D.A. Thermodynamic Modeling of the Composition and Characteristics of Combustion Products of Overrich Liquid Rocket Fluids in the Quenching Mode. High Temp 56, 263–269 (2018). https://doi.org/10.1134/S0018151X18010066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X18010066

Navigation