Microporosity of Polynorbornenes by Positron Annihilation and Sorption Data


Based on positron annihilation and low-temperature gas (CO2) sorption data, we discuss the nature of size distribution of micropores in a number of polynorbornenes with various substituent groups in the side chain. The local stiffness of highly permeable glassy polymers suggests that they are microheterogeneous. In this case, distributions that are bimodal in nature seem quite possible, although unimodal cases cannot be excluded either. The positron annihilation data are consistent with these concepts and correlate with permeability. At the same time, the positron and sorption data on porosity are found to have discrepancies, which are explained either by limited mobility of the positronium atom or by inaccuracy of description of the sorption curve according to the density functional theory (NLDFT) and the Monte Carlo method (GCMC).

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    Rudel, M., Krause, J., Ratzke, K., Faupel, M., Yampolskii, Yu., Shantarovich, V., and Dlubek, G., Macromolecules, 2008, vol. 41, p. 788.

    CAS  Article  Google Scholar 

  2. 2

    Shantarovich, V.P., J. Polym. Sci., Part B: Polym. Phys., 2008, vol. 46, p. 2485.

    CAS  Article  Google Scholar 

  3. 3

    Weber, M.H. and Lynn, K.G., Principles and Applications of Positron and Positronium Chemistry, Jean, Y.C., Mallon, P.E., and Schrader, D.M., Eds., Singapore: World Scientific, 2003, p. 167.

    Google Scholar 

  4. 4

    Shantarovich, V.P., Bekeshev, V.G., Kevdina, I.B., Yampol’skii, Yu.P., Bermeshev, M.V., and Belov, N.A., High Energy Chem., 2018, vol. 52, no. 4, p. 275.

    CAS  Article  Google Scholar 

  5. 5

    Horwath, G. and Kawazoe, R., J. Chem. Eng. Jpn., 1983, vol. 16, no. 6, p. 373.

    Google Scholar 

  6. 6

    NOVAWIN2 Version 2. 1: Operating Manual, Boynton Beach, FL: Quantachrome Instruments, 2004.

  7. 7

    Saito, A. and Foley, H.C., AlChE J., 1991, vol. 37, no. 3, p. 429.

    CAS  Article  Google Scholar 

  8. 8

    Barrett, E.P., Joyner, L.G., and Halenda, P.P., J. Am. Chem. Soc., 1951, vol. 73, p. 373.

    CAS  Article  Google Scholar 

  9. 9

    Vyacheslavov, A.S. and Efremova, M., Opredelenie ploshchadi poverkhnosti i poristosti materialov metodom sorbtsii gazov. Metodicheskaya razrabotka (A Tutorial on Determination of Surface Area and Porosity of Materials by Gas Sorption), Moscow: MGU, 2011.

  10. 10

    Starodubov, S.S., Nechaev, I.V., and Vvedenskii, A.V., Sorbts. Khromatogr. Protsessy, 2014, vol. 14, no. 2, p. 296.

    CAS  Google Scholar 

  11. 11

    Shantarovich, V.P., Bekeshev, V.G., Bermeshev, M.V., Alentiev, D.A., Gustov, V.W, Belousova, E.V., Kevdina, I.B., and Novikov, Yu.A., High Energy Chem., 2019, vol. 53, no. 4, p. 276.

    CAS  Article  Google Scholar 

  12. 12

    Wozniak, A.I., Bermesheva, E.V., Borisov, I.L., Petukhov, D.I., Bermeshev, M.V., Volkov, A.V., and Finkelshtein, E.S., Macromol. Rapid Commun., 2019, vol. 40, no. 20, p. 1900206.

    CAS  Article  Google Scholar 

  13. 13

    Bermesheva, E.V., Wozniak, A.I., Borisov, I.L., Yevlampieva, N.P., Vezo, O.S., Karpov, G.O., Bermeshev, M.V., Asachenko, A.F., Topchiy, M.A., Gribanov, P.S., Nechaev, M.S., Volkov, V.V., and Finkelshtein, E.S., Polym. Sci., Ser. C, 2019, vol. 61, no. 1, p. 86.

    CAS  Article  Google Scholar 

  14. 14

    Bermesheva, E.V., Wozniak, A.I., Andreyanov, F.A., Karpov, G.O., Nechaev, M.S., Asachenko, A.F., Topchiy, M.A., Melnikova, E.K., Nelyubina, Y.V., Gribanov, P.S., and Bermeshev, M.V., ACS Catal., 2020, vol. 10, no. 3, p. 1663.

    CAS  Article  Google Scholar 

  15. 15

    Wozniak, A.I., Bermesheva, E.V., Andreyanov, F.A., Borisov, I.L., Zarezin, D.P., Bakhtin, D.S., Gavrilova, N.N., Ilyasov, I.R., Nechaev, M.S., Asachenko, A.F., Topchiy, M.A., Volkov, A.V., Finkelshtein, E.S., and Ren, X.-K., M, React. Funct. Polym., 2020, p. 104513.

  16. 16

    Garrido, J., Linares-Solano, A., Martin-Martinez, J.M., Molina-Sabio, M., Rodriguez-Reinozo, F., and Torregroza, R., Langmuir, 1987, vol. 3, no. 1, pp. 76–81.

    CAS  Article  Google Scholar 

  17. 17

    Gun’ko, V.M., Leboda, R., Skubishevska-Zieba, J., Gawdzik, B., and Charmas, B., Appl. Surf. Sci., 2005, vol. 252, p. 612.

    Article  Google Scholar 

  18. 18

    Garcia-Martinez, J., Cazorla-Amoros, D., and Linares-Solano, A., Characterization of Porous Solids V, Unger, K.K., Kreysa, G., and Baselt, J.P., Eds., Amsterdam: Elsevier, 2000, p. 485.

    Google Scholar 

  19. 19

    Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., et al., Science, 2011, vol. 332, p. 1537.

    CAS  Article  Google Scholar 

  20. 20

    Thommes, M., Cychosz, K.A., and Neimark, A.V., Novel Carbon Adsorbents, Tascon, J.M.D., Ed., Amsterdam: Elsevier, 2012, ch. 4, p. 107.

    Google Scholar 

  21. 21

    Weber, J., Najying, Du., and Guiver, M.D., Macromolecules, 2011, vol. 44, p. 1763.

    CAS  Article  Google Scholar 

  22. 22

    Elmehalmey, W.A., Azzam, R.A., Hassan, Y.S., Alkordi, M.H., and Madkour, T.M., ACS Omega, 2018, vol. 3, p. 2757.

    CAS  Article  Google Scholar 

  23. 23

    Dlubek, G. and Eichler, S., Phys. Status Solidi A, 1998, vol. 168, p. 333.

    CAS  Article  Google Scholar 

  24. 24

    Zaleski, R., Stefanniak, W., Maciejewska, M., and Goworek, J., J. Porous Matter, 2009, vol. 16, p. 91.

    Article  Google Scholar 

  25. 25

    Alentiev, D.A., Bermeshev, M.V., Starannikova, L.E., Bermesheva, E.V., Shantarovich, V.P., Bekeshev, V.G., Yampolskii, Yu.P., and Finkelshtein, E.S., J. Polym. Sci., Part A: Polym. Chem., 2018, vol. 56, p. 1234.

    CAS  Article  Google Scholar 

  26. 26

    Tokarev, A.V., Bondarenko, G.N., and Yampol’skii, Yu.P., Polym Sci., Ser. A., 2007, vol. 49, no. 8, p. 909.

    Article  Google Scholar 

  27. 27

    Budd, P.M., McKeown N.B., Fritsch D., Yampolskii Yu., and Shantarovich V., Membrane Gas Separation, Yampolskii, Yu. and Freeman, B., Eds., Chichester: Wiley, 2010, p. 29.

    Google Scholar 

  28. 28

    Dlubek, G., Eichler, S., Hubner, Ch., and Nagel, Ch., Phys. Status Solidi A, 1999, vol. 174, p. 313.

    CAS  Article  Google Scholar 

  29. 29

    Rudel, M., Krauze, J., Ratzke, K., Faupel, F., Yampolskii, Yu.P., and Shantarovich, V.P., Macromolecules, 2008, vol. 41, p. 788.

    CAS  Article  Google Scholar 

  30. 30

    Hofmann, D., Entrialgo-Castano, M., Lebret, A., Heuchel, M., and Yampolskii, Yu.P., Macromolecules, 2003, vol. 36, p. 8528.

    CAS  Article  Google Scholar 

  31. 31

    Mazo, M., Balabaev, N., Alentiev, A., and Yampolskii, Yu., Macromolecules, 2018, vol. 51, no. 4, p. 1398.

    CAS  Article  Google Scholar 

  32. 32

    Shantarovich, V.P., Gustov, V.V., Belousova, E.V., Polyakova, A.V., Bekeshev, V.G., and Kevdina, I.B., Russ. J. Phys. Chem. B, 2014, vol. 8, no. 4, p. 559.

    CAS  Article  Google Scholar 

  33. 33

    Badd, P.M., Msaib, K.J., Tattershall, C.S., et al., J. Membr. Sci., 2005, vol. 251, p. 263.

    Article  Google Scholar 

  34. 34

    Shantarovich, V.P., Suzuki, T., He, C., Davankov, V.A., Pastukhov, A.V., Tsurupa, M.P., et al., Macromolecules, 2002, vol. 35, p. 9723.

    CAS  Article  Google Scholar 

  35. 35

    Shantarovich, V.P., Bekeshev, V.G., Pastukhov, A.V., Davankov, V.A., Krasil’nikova, O.K., et al., J. Phys., Conf. Ser., 2015, vol. 618, p. 92.

    Article  Google Scholar 

  36. 36

    Shantarovich, V.P., Novikov, Yu.A., Suptel, Z.K., Kevdina, I.B., Khotimskii, V.S., and Yampolskii, Yu.P., Radiat. Phys. Chem., 2000, vol. 58, p. 513.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. P. Shantarovich.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shantarovich, V.P., Bekeshev, V.G., Kevdina, I.B. et al. Microporosity of Polynorbornenes by Positron Annihilation and Sorption Data. High Energy Chem 55, 80–87 (2021). https://doi.org/10.1134/S0018143921010112

Download citation


  • positron
  • positronium
  • micropores
  • low-temperature gas sorption
  • polymers