Radiation-Induced Processes in Diazoquinone–Novolac Resist Films under Irradiation with 60Co γ-Rays

Abstract

The processes occurring under the irradiation of FP9120 diazoquinone–novolac resist films on silicon with 60Co γ-rays have been studied by attenuated total reflectance (ATR) FTIR spectroscopy. It has been found that a significant modification of the ATR spectra of the photoresist films was noticeable only at absorbed doses above 200 kGy, and it occurred due to the radiation-induced transformations of methyl, methylene, hydroxymethyl, and phenoxyl groups of phenol–formaldehyde resin and o-naphthoquinone diazide (a photosensitive component). At the same time, the ATR spectra exhibited no signs of the destruction of aromatic fragments in the resist at doses to 300 kGy. In the region of the stretching vibrations of C=O bonds, a decrease in the maximum intensity of a band at ~1700 cm–1 was observed upon irradiation with its simultaneous broadening and shift to the high-energy region by ~30 cm–1 due to a change in the nearest environment of the C=O group. An increase in the absorption band intensity at 1650 cm–1 indicated the accumulation of formaldehyde upon the γ-irradiation of the resist as a result of the fragmentation of hydroxymethyl residues in the phenol–formaldehyde resin.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    Clough, R.L., Nucl. Instrum. Methods Phys. Res., Sect. B, 2001, vol. 185, p. 8.

    CAS  Google Scholar 

  2. 2

    Kabanov, V.Ya., Feldman, V.I., Ershov, B.G., Polikarpov, A.P., Kiryukhin, D.P., and Apel’, P.Yu., High Energy Chem., 2009, vol. 43, no. 1, p. 1.

    CAS  Article  Google Scholar 

  3. 3

    Eksperimental’nye metody khimii vysokikh energii (Experimental Methods in High Energy Chemistry), Mel’nikov, M.Ya., Ed., Moscow: Izd. MGU, 2009, p. 172.

  4. 4

    Guven, O., Alacakir, A., and Tan, E., Radiat. Phys. Chem., 1997, vol. 50, no. 2, p. 165.

    CAS  Article  Google Scholar 

  5. 5

    Vabishchevich, S.A., Brinkevich, S.D., Brinkevich, D.I., and Prosolovich, V.S., High Energy Chem., 2020, vol. 54, no. 1, p. 46. https://doi.org/10.31857/S0544126920060022

    CAS  Article  Google Scholar 

  6. 6

    Debmalya, Roy., Basu, P.K., Raghunathan, P., and Eswaran, S.V., Magn. Reson. Chem., 2003, vol. 41, p. 84.

    Article  Google Scholar 

  7. 7

    Moreau, W.M., Semiconductor Lithography: Principles, Practices and Materials, New York: Plenum, 1988.

    Google Scholar 

  8. 8

    Brinkevich, D.I., Brinkevich, S.D., Vabishchevich, N.V., Odzhaev, V.B., and Prosolovich, V.S., Russ. Microelectron., 2014, vol. 43, no. 3, p. 194.

    CAS  Article  Google Scholar 

  9. 9

    Vabishchevich, S.A., Vabishchevich, N.V., Brinkevich, D.I., Prosolovich, V.S., Yankovskii, Yu.N., and Brinkevich, S.D., Vestn, Polotsk. Gos. Univ., Ser. C: Fundam. Nauki, 2016, no. 12, p. 30.

  10. 10

    Samsonova, L.G., Primenenie IK i PMR spektroskopii pri izuchenii stroeniya organicheskikh molekul Uchebno-metodicheskoe posobie (Application of IR and Proton NMR Spectroscopy to Investigation of Organic Molecules: A Tutorial), Tomsk, 2016.

  11. 11

    Brinkevich, S.D., Grinyuk, E.V., Brinkevich, D.I., and Prosolovich, V.S., High Energy Chem., 2020, vol. 54, no. 5, p. 342.

    CAS  Article  Google Scholar 

  12. 12

    Bel’kov, M.V., Brinkevich, S.D., Samovich, S.N., Skornyakov, I.V., Tolstorozhev, G.B., and Shadyro, O.I., J. Appl. Spectrosc., 2012, vol. 78, no. 6, p. 794.

    Article  Google Scholar 

  13. 13

    Tolstorozhev, G.B., Skornyakov, I.V., Bel’kov, M.V., Shadyro, O.I., Brinkevich, S.D., and Samovich, S.N., Opt. Spectrosc., 2012, vol. 113, no. 2, p. 179.

    CAS  Article  Google Scholar 

  14. 14

    Oleshkevich, A.N., Lapchuk, N.M., Odzhaev, V.B., Karpovich, I.A., Prosolovich, V.S., Brinkevich, D.I., and Brinkevich, S.D., Russ. Microelectron., 2020, vol. 49, no. 1, p. 55.

    CAS  Article  Google Scholar 

  15. 15

    Pretsch, E., Bühlmann, P., and Affolter, C., Structure Determination of Organic Compounds, Berlin: Springer, 2000.

    Google Scholar 

  16. 16

    Metody issledovaniya drevesiny i ee proizvodnykh: Uchebnoe posobie (Methods for Investigation of Wood and Its Derivatives: A Tutorial), Bazarnova, N.G., Ed., Barnaul: Altaiskii Gos. Univ., 2002.

    Google Scholar 

  17. 17

    Brinkevich, S.D., Brinkevich, D.I., and Prosolovich, V.S., Russ Microelectron., 2021, vol. 50, no. 1, p. 32.

  18. 18

    Brinkevich, S.D., Maliborskii, A.Ya., Kapusto, I.A., Sverdlov, R.L., Grigor’ev, Yu.V., Ivashkevich, O.A., and Shadyro, O.I., High Energy Chem., 2019, vol. 53, no. 2, p. 147.

    CAS  Article  Google Scholar 

  19. 19

    Saraeva, V.V., Radioliz uglevodorodov v zhidkoi faze. Sovremennoe sostoyanie voprosa (Liquid-Phase Radiolysis of Hydrocarbons: Current Status), Moscow: Izd. MGU, 1986.

  20. 20

    Prosolovich, V.S., Brinkevich, D.I., Brinkevich, S.D., Grinyuk, E.V., and Yankovskii, Yu.N., in “Vzaimodeistvie izluchenii s tverdym telom.”. Materialy 13 mezhd. konf., Minsk, 30.09-3.10.2019 (Interaction of Radiation with Solids: Proceedings of the 13th International Conference, September 30–October 3, 2019, Minsk), Minsk: Izd. Tsentr BGU, 2019, p. 169.

  21. 21

    Brinkevich D.I., Prasalovich U.S., and Yankouski, Y.M., J. Belarus. State Univ., Phys., 2020, no, 2, p. 24.

  22. 22

    Brinkevich, S.D., Reztsov, I.A., and Shadyro, O.I., High Energy Chem., 2014, vol. 48, no. 5, p. 303.

    CAS  Article  Google Scholar 

  23. 23

    Petryaev, E.P. and Shadyro, O.I., Radiatsionnaya khimiya bifunktsional’nykh organicheskikh soedinenii (Radiation Chemistry of Bifunctional Organic Compounds), Minsk: Universitetskoe, 1986.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. D. Brinkevich.

Additional information

Translated by V. Makhlyarchuk

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brinkevich, S.D., Brinkevich, D.I., Prosolovich, V.S. et al. Radiation-Induced Processes in Diazoquinone–Novolac Resist Films under Irradiation with 60Co γ-Rays. High Energy Chem 55, 65–74 (2021). https://doi.org/10.1134/S0018143921010070

Download citation

Keywords:

  • IR spectrometry
  • ATR
  • diazoquinone–novolac photoresist
  • γ-irradiation
  • silicon