A New Approach to the Synthesis of Lead Sulfide Colloidal Quantum Dots in a Mixture of Oleylamine and Oleic Acid


A new approach to the synthesis of lead sulfide colloidal quantum dots has been proposed, which uses a mixture of oleic acid and oleylamine. Colloidal quantum dots of PbS with a long-wavelength excitonic peak in the range from 1.7 to 2.05 μm have been obtained. The effects of temperature, reaction time, and the ratio of lead and sulfur precursors on the spectral characteristics of PbS quantum dots obtained have been studied.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1

    Brichkin, S.B., Spirin, M.G., Gak, V.Yu., and Razumov, V.F., Organicheskie i gibridnye nanomaterialy: poluchenie, issledovanie, primenenie (Organic and Hybrid Nanomaterials: Fabrication, Investigation, and Applications), Razumov, V.F. and Klyuev, M.V., Eds., Ivanovo< IvGU, 2019.

  2. 2

    Brichkin, S.B., Gak, V.Yu., Spirin, M.G., Gadomska, A.V., Bocharova, S.I., and Razumov, V.F., High Energy Chem., 2020, vol. 54, no. 1, p. 36.

    CAS  Article  Google Scholar 

  3. 3

    Shuklov, I.A. and Razumov, V.F., Usp. Khim., 2020 (in press). https://doi.org/10.1070/RCR4917

    Article  Google Scholar 

  4. 4

    Konstantatos, G., Howard, I., Fischer, A., et al., Nature, 2006, vol. 442, p. 180.

    CAS  Article  Google Scholar 

  5. 5

    Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc., 1993, vol. 115, p. 8706.

    CAS  Article  Google Scholar 

  6. 6

    Talapin, D.V., Lee, J.S., Kovalenko, M.V., and Shevchenko, E.V., Chem. Rev., 2010, vol. 110, p. 389.

    CAS  Article  Google Scholar 

  7. 7

    Razumov, V.F., Fotonika kolloidnykh kvantovykh tochek (Photonics of Colloid Quantum Dots) Ivanovo: Ivanovskii Gosudarstvennyi Universitet, 2017.

  8. 8

    Nikolenko, L.M. and Razumov, V.F., Usp. Khim., 2013, vol. 82, p. 429.

    Article  Google Scholar 

  9. 9

    Brichkin, S.B. and Razumov, V.F., Usp. Khim., 2016, vol. 85, p. 1297.

    CAS  Article  Google Scholar 

  10. 10

    Razumov, V.F., Usp. Fiz. Nauk, 2016, vol. 186, p. 1368.

    Article  Google Scholar 

  11. 11

    Hines, M.A. and Scholes, G.D., Adv. Mater., 2003, vol. 15, p. 1844.

    CAS  Article  Google Scholar 

  12. 12

    Sonntag, L., Shamraienko, V., Fana, X., Khoshkhoo, M.S., Kneppe, D., Koitzsch, A., Gemming, T., Hiekel, K., Leo, K., Lesnyak, V., and Eychmuller, A., Nanoscale, 2019, vol. 11, p. 19370.

    CAS  Article  Google Scholar 

  13. 13

    Liu, Y., Lim, C.-K., Fu, Z., Yin, D., and Swihart, M.T., Chem. Mater., 2019, vol. 31, p. 5706.

    CAS  Article  Google Scholar 

  14. 14

    Thomson, J.W., Nagashima, K., Macdonald, P.M., and Ozin, G.A., J. Am. Chem. Soc., 2011, vol. 133, p. 5036.

    CAS  Article  Google Scholar 

  15. 15

    Cademartiri, L., Bertolotti, J., Sapienza, R., Wiersma, D.S., von Freymann, G., and Ozin, G.A, J. Phys. Chem. B, 2006, vol. 110, p. 671.

    CAS  Article  Google Scholar 

  16. 16

    Weidman, M.C., Beck, M.E., Hoffman, R.S., Prins, F., and Tisdale, W.A., ACS Nano, 2014, vol. 86, p. 6363.

    Article  Google Scholar 

  17. 17

    Jiao, S., Wang, J., Shen, Q., Li, Y., and Zhong, X., J. Mater. Chem. A, 2016, vol. 4, p. 7214.

    CAS  Article  Google Scholar 

  18. 18

    Liu, T.-Y., Li, M., Ouyang, J., Zaman, M.B., Wang, R., Wu, X., Yeh, C.-S., Lin, Q., Yang, B., and Yu, K., J. Phys. Chem. C, 2009, vol. 113, p. 2301.

    CAS  Article  Google Scholar 

  19. 19

    Deng, D., Cao, J., Xia, J., Qian, Z., Gu, Y., Gu, Z., and Akers, W.J., Eur. J. Inorg. Chem., 2011, p. 2422.

    Article  Google Scholar 

  20. 20

    Warner, J.H. and Cao, H., Nanotechnology, 2008, vol. 19, p. 305605.

    Article  Google Scholar 

  21. 21

    Li, M., Yuan, X., Ruan, H., Wang, X., Liu, Y., Lu, Z., and Hai, J., J. Alloys Compd., 2017, vol. 706, p. 395.

    CAS  Article  Google Scholar 

  22. 22

    Trinh, T.K., Truong, N.T.N., Pham, V.T.H., and Park, C., Sci. Adv. Mater., 2016, vol. 8, p. 601.

    CAS  Article  Google Scholar 

  23. 23

    Li, H., Chen, D., Li, L., Tang, F., Zhang, L., and Rena, J., Cryst. Eng. Commun., 2010, vol. 12, p. 1127.

    CAS  Article  Google Scholar 

  24. 24

    Long, G., Sabalo, K., Alsaidi, R., Beattie, M., Chaudhry, B., Khan, M., Uddin, J., and Sadoqi, M., AIMSMater. Sci., 2017, vol. 4, p. 515.

    Google Scholar 

  25. 25

    Mayer, R., Organic Chemistry of Sulfur, Oae, S., Ed., New York: Plenum, 1977, p. 33.

    Google Scholar 

  26. 26

    Thomson, J.W., Nagashima, K., Macdonald, P.M., and Ozin, G.A., J. Am. Chem. Soc., 2011, vol. 133, p. 5036.

    CAS  Article  Google Scholar 

  27. 27

    Moreels, I., Lambert, K., Smeets, D., De Muynck, D., Nollet, T., Martins, J.C., Vanhaecke, F., Vantomme, A., Delerue, C., Allan, G., and Hens, Z., ACS Nano, 2009, vol. 3, no. 2009, p. 3023.

    CAS  Article  Google Scholar 

Download references


This work was supported by the Russian Foundation for Basic Research, project no. 18-29-20062; carried out within the program of the state assignment AAAA-A19-119070790003-7; and also supported by the Government of the Russian Federation, agreement no. 074-02-2018-286.

Author information



Corresponding author

Correspondence to I. A. Shuklov.

Additional information

Translated by A. Tatikolov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shuklov, I.A., Toknova, V.F., Demkin, D.V. et al. A New Approach to the Synthesis of Lead Sulfide Colloidal Quantum Dots in a Mixture of Oleylamine and Oleic Acid. High Energy Chem 54, 183–188 (2020). https://doi.org/10.1134/S0018143920030133

Download citation


  • colloidal quantum dots
  • lead sulfide
  • oleylamine
  • green chemistry
  • high-temperature colloidal synthesis