Skip to main content
Log in

Water Activated by Air Spark Plasma Radiation

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The concentration of oxidative equivalents, formed in a 5-mL sample of water by the action of radiation from spark discharge plasma and products diffusing from the discharge region to the sample surface, has been investigated. Immediately after treatment for 3 min, the concentration of oxidative equivalents is 22.4 ± 2.5 (mmol eq)/L, decreasing to zero in 14 days. The redox potential of the treated water is 553 ± 5 mV. On the fourth to ninth day, the potential increases to 630 ± 10 mV. The acidity of water is pH 2.4–2.6. The energy expenditure for activating water by plasma radiation is less than that for activating by the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bruggeman, P.J., Kushner, M.J., Locke, B.R., et al., Plasma Sources Sci. Technol., 2016, vol. 25, p. 053002.

    Article  CAS  Google Scholar 

  2. Thirumdas, R., Kothakota, A., Annapure, U., Siliveru, K., Blundell, R., Gatt, R., and Valdramidis, V.P., Trends Food Sci. Technol., 2018, vol. 77, p. 21.

    Article  CAS  Google Scholar 

  3. Lukes, P., Clupek, M., Babicky, V., and Sunka, P., Plasma Sources Sci. Technol., 2008, vol. 17, no. 11, p. 024012.

    Article  CAS  Google Scholar 

  4. Brisset, J.-L. and Pawlat, L., Plasma Chem. Plasma Process., 2016, vol. 36, no. 2, p. 355.

    Article  CAS  Google Scholar 

  5. Schnabel, U., Niquet, R., Schmidt, C., Stachowiak, J., Schluter, O., Andrasch, M., and Ehlbeck, J., Int. J. Environ. Agricult. Res., 2016, vol. 2, p. 212.

    Google Scholar 

  6. Piskarev, I.M., Astaf’eva, K.A., and Ivanova, I.P., Biophysics (Moscow), 2017, vol. 62, no. 4, p. 547.

    Article  CAS  Google Scholar 

  7. Piskarev, I.M., Astaf’eva, K.A., and Ivanova, I.P., Sovrem. Tekhnol. Med., 2018, vol. 10, no. 2, p. 91.

    Google Scholar 

  8. Piskarev, I.M., High Energy Chem., 2016, vol. 50, no. 4, p. 298.

    Article  CAS  Google Scholar 

  9. Piskarev, I.M., Tekh. Fiz., 1999, vol. 44, no. 1, p. 53.

    CAS  Google Scholar 

  10. Piskarev, I.M., Res. J. Pharm. Biol. Chem. Sci., 2015, vol. 6, no. (6), p. 1136.

  11. Piskarev, I.M., High Energy Chem., 2018, vol. 52, no. 4, p. 348.

    Article  CAS  Google Scholar 

  12. Pikaev, A.K., Dozimetriya v radiatsionnoi khimii (Dosimetry in Radiation Chemistry), Moscow: Nauka, 1975.

  13. Piskarev, I.M., High Energy Chem., 2018, vol. 52, no. 4, p. 212.

    Article  CAS  Google Scholar 

  14. Aristova, N.A., Ivanova, I.P., Trofimova, S.V., Knyazev, D.I., and Piskarev, I.M., High Energy Chem., 2011, vol. 45, no. 6, p. 505.

    Article  CAS  Google Scholar 

  15. Epstein, I.R., Kustin, K., and Warshaw, L.J., J. Am. Chem. Soc., 1980, vol. 102, no. 11, p. 3751.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Piskarev.

Additional information

Translated by V. Makhaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piskarev, I.M. Water Activated by Air Spark Plasma Radiation. High Energy Chem 53, 82–86 (2019). https://doi.org/10.1134/S0018143919080034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143919080034

Keywords:

Navigation