Skip to main content
Log in

Influence of Photogeneration Frequency on the Transport of Spin Charge Carriers in the Copolymer–Methanofullerene Composite: EPR Study

  • PHOTONICS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The photovoltaic composite formed by narrow-gap copolymer poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(bithiophene)] and methanofullerene [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) has been studied in a wide energy range of generating photons, 1.32–3.14 eV at T = 77 K, by the light-induced electron paramagnetic resonance. It has been shown that some polarons are captured by spin traps formed in the copolymer matrix, and the concentration and depth of such traps are determined by the photon energy. The recombination kinetics of polarons and fullerene radical anions after turning off the light can be described in the framework of a second-order bimolecular process. The formation of spin traps in the copolymer matrix and the exchange interaction between different spin packets cause the extreme sensitivity of magnetic resonance and electronic parameters of charge carriers to the number and energy of generating photons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Lupton, J.M., McCamey, D.R., and Boehme, C., ChemPhysChem, 2010, vol. 11, no. 14, p. 3040.

    Article  CAS  PubMed  Google Scholar 

  2. Polymer Photovoltaics: Materials, Physics, and Device Engineering, Fei, H., Hin-Lap, Y., and Yong, C., Eds., Cambridge: Royal Society of Chemistry, 2015.

  3. Park, S.H., Roy, A., Beaupre, S., Cho, S., Coates, N., Moon, J.S., Moses, D., Leclerc, M., Lee, K., and Heeger, A.J., Nat. Photon., 2009, vol. 3, p. 297.

    Article  CAS  Google Scholar 

  4. Griffin, J., Pearson, A.J., Scarratt, N.W., Wang, T., Dunbar, A.D.F., Yi, H., Iraqi, A., Buckley, A.R., and Lidzey, D.G., Org. Electron, 2015, vol. 21, p. 216.

    Article  CAS  Google Scholar 

  5. Lu, X.H., Hlaing, H., Germack, D.S., Peet, J., Jo, W.H., Andrienko, D., Kremer, K., and Ocko, B.M., Nat. Comm-un., 2012, vol. 3, p. 1290.

    Article  CAS  Google Scholar 

  6. Moon, J.S., Jo, J., and Heeger, A.J., Adv. Energy Mater., 2012, vol. 2, no. 3, p. 304.

    Article  CAS  Google Scholar 

  7. Banerji, N., Cowan, S., Leclerc, M., Vauthey, E., and Heeger, A.J., J. Am. Chem. Soc., 2010, vol. 132, no. 49, p. 17459.

    Article  CAS  PubMed  Google Scholar 

  8. Gutzler, R. and Perepichka, D.F., J. Am. Chem. Soc., 2013, vol. 135, no. 44, p. 16585.

    Article  CAS  PubMed  Google Scholar 

  9. Lukina, E.A., Uvarov, M.N., and Kulik, L.V., J. Phys. Chem. C, 2014, vol. 118, no. 32, p. 18307.

    Article  CAS  Google Scholar 

  10. Liedtke, M., Sperlich, A., Kraus, H., Baumann, A., Deibel, C., Wirix, M.J.M., Loos, J., Cardona, C.M., and Dyakonov, V., J. Am. Chem. Soc., 2011, vol. 133, no. 23, p. 9088.

    Article  PubMed  Google Scholar 

  11. Krinichnyi, V.I., Spectroscopy of Polymer Nanocomposites, Thomas, S., Rouxel, D., Ponnamma, D., Eds., Amsterdam: Elsevier, 2016, p. 202.

    Google Scholar 

  12. Krinichnyi, V.I., Yudanova, E.I., and Bogatyrenko, V.R., J. Phys. Chem. Solids, 2017, vol. 111, no. 1, p. 153.

    Article  CAS  Google Scholar 

  13. Krinichnyi, V.I., Yudanova, E.I., and Bogatyrenko, V.R., Sol. Energy Mater. Sol. Cells, 2018, vol. 174, p. 333.

    Article  CAS  Google Scholar 

  14. Poluektov, O.G., Filippone, S., Martin, N., Sperlich, A., Deibel, C., and Dyakonov, V., J. Phys. Chem. B, 2010. vol. 114, no. 45, p. 14426.

    Article  PubMed  Google Scholar 

  15. Niklas, J., Mardis, K.L., Banks, B.P., Grooms, G.M., Sperlich, A., Dyakonov, V., Beaupre, S., Leclerc, M., Xu, T., Yue, L., and Poluektov, O.G., Phys. Chem. Chem. Phys., 2013, vol. 15, no. 24, p. 9562.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Poole, C.P., Jr., Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques, Mineola, NY: Dover, 1997.

    Google Scholar 

  17. Buchachenko, A.L., Turton, C.N., and Turton, T.I., Stable Radicals, New York: Consultants Bureau, 1995.

    Google Scholar 

  18. Molin, Y.N., Salikhov, K.M., and Zamaraev, K.I., Spin Exchange, Berlin: Springer, 1980.

    Book  Google Scholar 

  19. Houze, E. and Nechtschein, M., Phys. Rev. B: Condens. Matter, 1996, vol. 53, no. 21, p. 14309.

    Article  CAS  Google Scholar 

  20. Krinichnyi, V.I., Yudanova, E.I., and Wessling, B., Synth. Met., 2013, vol. 179, p. 67.

    Article  CAS  Google Scholar 

  21. Tachiya, M. and Seki, K., Phys. Rev. B: Condens. Matter, 2010, vol. 82, no. 8, p. 085201.

    Article  CAS  Google Scholar 

  22. Carrington, A. and McLachlan, A.D., Introduction to Magnetic Resonance with Application to Chemistry and Chemical Physics, New York: Harper and Row, 1967.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out within the State assignment no. 0089-2014-0036 and was supported by the Russian Foundation for Basic Research, project no. 18-29-20011.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. I. Yudanova or V. I. Krinichnyi.

Additional information

Translated by A. Tatikolov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudanova, E.I., Krinichnyi, V.I., Bogatyrenko, V.R. et al. Influence of Photogeneration Frequency on the Transport of Spin Charge Carriers in the Copolymer–Methanofullerene Composite: EPR Study. High Energy Chem 53, 219–227 (2019). https://doi.org/10.1134/S0018143919030159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143919030159

Keywords:

Navigation