Skip to main content
Log in

[2+2] Photocycloaddition of Styryl Dyes in the Cucurbit[8]uril Cavity and Its Ultrafast Dynamics

  • PHOTOCHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

[2+2] Photocycloaddition of a series of styryl dyes (a, b, and c, see text) in the cavity of cucurbit[8]uril (CB8) in aqueous solutions has been studied by optical spectroscopy. The complex formation constants were calculated for the 1 : 1 and 2 : 1 complexes of the styryl dyes with CB8. The optimal CB8 to dye molar ratios that correspond to the highest concentrations of the 2 : 1 complexes in the solution have been determined as 0.5, 0.3, and 1 for dyes a, b, and c, respectively. The quantum yields of photocycloaddition have been calculated from the results of dye photolysis in the presence of CB8: 0.06, 0.02, and 0.04 for a, b, and c, respectively. The fluorescence decay kinetics has been studied on the picosecond timescale. The lifetimes found are 1–2 ps, which correspond to the characteristic time of the solvation shell effect on the redistribution of the dye charge in the excited state. The long component of the fluorescence decay on the order of tens of picosecond is also observed. This component decreases in the presence of CB8, indicating the formation of dimeric state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Lee, J.W., Samal, S., Selvapalam, N., Kim, H.-J., and Kim, K., Acc. Chem. Res., 2003, vol. 36, p. 621.

    Article  CAS  PubMed  Google Scholar 

  2. Behrend, R., Meyer, E., and Rusche, F., Liebigs Ann. Chem., 1905, vol. 339, p. 1.

    Article  Google Scholar 

  3. Freeman, W.A., Mock, W.L., and Shih, N.-Y., J. Am. Chem. Soc., 1981, vol. 103, p. 7367.

    Article  CAS  Google Scholar 

  4. Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L., and Lu, X., RSC Adv., 2012, vol. 2, p. 1213.

    Article  CAS  Google Scholar 

  5. Svoboda, J. and Konig, B., Chem. Rev., 2006, vol. 106, p. 5413.

    Article  CAS  PubMed  Google Scholar 

  6. Gromov, S.P., Izv. Akad. Nauk, Ser. Khim., 2008, p. 1299.

    Google Scholar 

  7. Gromov, S.P., Obzorn. Zh. Khim., 2011, vol. 1, p. 3.

    Google Scholar 

  8. Pemberton, B.C., Singh, R.K., Johnson, A.C., Jockusch, S., Da Silva, J.P., Ugrinov, A., Turro, N.J., Srivastava, D.K., and Sivaguru, J., Chem. Commun., 2011, vol. 47, p. 6323.

    Article  CAS  Google Scholar 

  9. Gromov, S.P., Vedernikov, A.I., Kuz’mina, L.G., Kondratuk, D.V., Sazonov, S.K., Strelenko, Yu.A., Alfimov, M.V., and Howard, J.A.K., Eur. J. Org. Chem., 2010, p. 2587.

  10. Bach, T., Synthesis, 1998, p. 683.

  11. Organic Nanoreactors: From Molecular to Supramolecular Organic Compounds, Sadjadi, S., Ed., Amsterdam: Elsevier/Academic. 2016.

    Google Scholar 

  12. Nakamura, A., Irie, H., Hara, S., Sugawarab, M., and Yamadab, S., Photochem. Photobiol. Sci., 2011, vol. 10, p. 1496.

    Article  CAS  PubMed  Google Scholar 

  13. Jon, S.Y., Ko, Y.H., Park, S.H., Kim, H.-J., and Kim, K., Chem. Commun., 2001, p. 1938.

  14. Pattabiraman, M., Kaanumalle, L.S., Natarajan, A., and Ramamurthy, V., Langmuir, 2006, vol. 22, p. 7605.

    Article  CAS  PubMed  Google Scholar 

  15. Li, F., Zhuang, J., Jiang, G., Tang, H., Xia, A., Jiang, L., Song, Y., Li, Y., and Zhu, D., Chem. Mater., 2008, vol. 20, p. 1194.

    Article  CAS  Google Scholar 

  16. Ushakov, E.N., Vedernikov, A.I., Alfimov, M.V., and Gromov, S.P., Photochem. Photobiol. Sci., 2011, vol. 10, p. 15.

    Article  CAS  PubMed  Google Scholar 

  17. Ushakov, E.N., Vedernikov, A.I., Lobova, N.A., Dmitrieva, S.N., Kuz’mina, L.G., Moiseeva, A.A., Howard, J.A.K., Alfimov, M.V., and Gromov, S.P., J. Phys. Chem. A, 2015, vol. 119, p. 13025.

    Article  CAS  PubMed  Google Scholar 

  18. Hoyer, T., Tuszynski, W., and Lienau, Ch., Chem. Phys. Lett., 2007, vol. 443, p. 107.

    Article  CAS  Google Scholar 

  19. Hallmann, J., Morgenroth, W., Paulmann, C., Davaasambuu, J., Kong, Q., Wulff, M., and Techert, S., J. Am. Chem. Soc., 2009, vol. 131, p. 15018.

    Article  CAS  PubMed  Google Scholar 

  20. Gans, P., Sabatini, A., and Vacca, A., Talanta, 1996, vol. 43, p. 1739.

    Article  CAS  PubMed  Google Scholar 

  21. Ivanov, D.A., Petrov, N.Kh., Alfimov, M.V., Vedernikov, A.I., and Gromov, S.P., High Energy Chem., 2014, vol. 48, p. 253.

    Article  CAS  Google Scholar 

  22. Petrov, N.Kh., Ivanov, D.A., Shandarov, Yu.A., Kryukov, I.V., Avakyan, V.G., Alfimov, M.V., Sazo-nov, S.K., and Gromov, S.P., Nanotechnol. Russ, 2016, vol. 11, p. 221.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the Russian Scientific Foundation, project no. 14-13-00751, in part of time-resolved measurements; by the Russian Foundation for Basic Research, project no. 18-03-00214, in part of the synthesis of styryl dyes; and by the Ministry of Science and Higher Education under the State Program of “Crystallography and Photonics” Federal Scientific Research Center in part of steady-state measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Svirida.

Additional information

Translated by T. Nekipelova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svirida, A.D., Ivanov, D.A., Kryukov, I.V. et al. [2+2] Photocycloaddition of Styryl Dyes in the Cucurbit[8]uril Cavity and Its Ultrafast Dynamics. High Energy Chem 53, 204–210 (2019). https://doi.org/10.1134/S0018143919030147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143919030147

Keywords:

Navigation