Skip to main content
Log in

Reduction of Boron Trichloride in Atmospheric-Pressure Argon–Hydrogen Radiofrequency Induction Plasma

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The main operating modes of a radiofrequency induction plasma torch with a vortex stabilization of the atmospheric-pressure gas discharge at have been studied in an argon-hydrogen mixture in the range of Ar/H2 = 12–4. The dependences of the electron temperature Te and number density ne on the Ar/H2 ratio have been experimentally studied. It has been found that the electron temperature and concentration in pure argon plasma are 0.88 eV and 7.6 × 1014 cm−3, respectively. When the Ar/H2 ratio decreases, the electron temperature decreases to 0.42 eV, and the electron number density is 8 × 1012 cm−3. The calorimetric method used to estimate the gas temperature Tg, has given a value of 2500 K. The process of BCl3 reduction with hydrogen has been studied at the implemented operating modes of the induction plasma torch. The main products of the reduction of boron trichloride are a polycrystalline boron powder and dichloroborane. The morphology of boron and its phase composition and impurities have been studied. The average particle size of the boron powder is 200 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Reed, T.B., J. Appl. Phys., 1961, vol. 32, p. 821.

    Article  CAS  Google Scholar 

  2. Eckert, H.U., Report SAMSO-TR-227, Los Angeles: Space and Missile Systems Organization, 1972.

  3. Mazin, V.I., RU Patent 2233563, 2004.

  4. Frolov, V., Matveev, I., Ivanov, D., Zverev, S., Ushin, B., and Petrov, G., Rom. J. Phys., 2011, vol. 56, p. 36.

    Google Scholar 

  5. Matveev, I., Matveyeva, S., and Zverev, S., IEEE Trans. Plasma Sci., 2014, vol. 42, p. 3891.

    Article  CAS  Google Scholar 

  6. Vetrov, S.I., Spitsyn, A.V., Shuvaev, D.A., and Yanchenkov, S.V., Plasma Phys. Rep., 2006, vol. 32, p. 418.

    Article  CAS  Google Scholar 

  7. Gol’dfarb, V.M. and Dresvin, S.V., Teplofiz. Vys. Temp., 1995, vol. 3, p. 333.

    Google Scholar 

  8. Isola, L.M., Gómez, B.J., and Guerra, V., J. Phys. D: Appl. Phys., 2010, vol. 43, p. 01520.

    Article  CAS  Google Scholar 

  9. Greene, B.R., Clemens, N.T., Varghese, P.L., Bouslog, S.A., and Del Papa, S.V., 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 9–13 January 2017, AIAA SciTech Forum, (AIAA 2017-0394).

  10. Laux, C.O., Spence, T.G., Kruger, C.H., and Zare, R.N., Plasma Sources Sci. Technol., 2003, vol. 12, p. 125.

  11. Diana, M., Russo, G., and Mario, L., Proceedings of International Round Table on Study and Applications of Transport Phenomena in Thermal Plasmas, Bonnet, C. Ed., Odeillo: CNRS, 1975, Rep. 1.8.

  12. Cueilleron, J. and Cruiziat, B., Bull. Soc. Chim. Fr., 1973, vol. 4, p. 1207.

    Google Scholar 

  13. Murdoch, H.D. and Hamblyn, S.M.L., US Patent 3625846, 1971.

  14. Kelina, I.Yu., Ershova, N.I., Arakcheev, A.V., et al., Refract. Ind. Ceram., 2004, vol. 45, p. P. 185.

  15. Rusanov, V.D. and Fridman, A.A., Physics of Chemically Active Plasma, Boca Raton: CRC, 2007.

    Google Scholar 

  16. Han, G. and Cho, G., Appl. Sci. Converg. Technol., 2017, vol. 26, p. 201.

    Article  Google Scholar 

  17. Zhu, X.-M. and Pu, Y.-K., Plasma Sources Sci. Technol., 2008, vol. 17, p. 024002.

    Article  CAS  Google Scholar 

  18. Iordanova, E., de Vries, N., Guillemier, M., and Mvan der Mullen J.J., J. Phys. D: Appl. Phys., 2008, vol. 41, p. 015208.

    Article  CAS  Google Scholar 

  19. Bityurin, V.A., Grigorenko, A.V., Efimov, A.V., Klimov, A.I., Korshunov, O.V., Kutuzov, D.S., and Chinnov, V.F., High Temp., 2014, vol. 52, p. P. 31.

  20. Raizer, Y.P., Gas Discharge Physics, Berlin: Spriger, 1991.

    Book  Google Scholar 

  21. Nester, S.A., Potapkin, B.V., Levitskii, A.A., Rusanov, V.D., Trusov, B.G., and Fridman, A.A., Kinetiko-statisticheskoe modelirovanie khimicheskikh reaktsii v gazovom razryade (Kinetic–Statistical Modeling of Chemical Reactions in Gas Discharge), Moscow: TsNII Atominform, 1988.

  22. Fridman, A., Plasma Chemistry, New York: Cambridge Univ. Press, 2008.

    Book  Google Scholar 

  23. Tsvetkov, Yu.V. and Panfilov, S.A., Nizkotemperaturnaya plazma v protsessakh vosstanovleniya (Low-Temperature Plasma in Reduction Processes), Moscow: Nauka, 1980.

  24. Lannin, J.S., Solid State Commun., 1978, vol. 25, p. 363.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 17-13-01027). Authors thank the Ministry of Science and Higher Education of the Russian Federation (project no. 0095-2016-0006) for providing analytical equipment for characterization of the material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Kornev.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornev, R.A., Sennikov, P.G., Shabarova, L.V. et al. Reduction of Boron Trichloride in Atmospheric-Pressure Argon–Hydrogen Radiofrequency Induction Plasma. High Energy Chem 53, 246–253 (2019). https://doi.org/10.1134/S001814391903010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001814391903010X

Keywords:

Navigation