High Energy Chemistry

, Volume 52, Issue 2, pp 183–188 | Cite as

Study of the Influence of Nonequilibrium Dielectric-Barrier Discharge Plasma on the Valence State of Transition Metals in Aqueous Solutions

  • R. V. Yakushin
  • V. A. Kolesnikov
  • V. A. Brodskiy
  • E. N. Ofitserov
  • A. V. Chistolinov
  • A. V. Perfil’eva
  • I. N. Solov’eva
  • G. I. Kandelaki
Plasma Chemistry
  • 6 Downloads

Abstract

The effect of dielectric-barrier discharge plasma treatment on the valence state of metal ions in aqueous solutions of manganese, iron, cobalt, and nickel (Mn, Fe, Co, Ni) salts has been studied. The efficiency of recovery of sparingly soluble compounds of transition metals during the treatment of model solutions in a plasma reactor designed by the authors has been evaluated. The possibility of hydrogen peroxide formation in water by barrier discharge treatment has been shown, and the change in the redox potential of the system has been analyzed.

Keywords

dielectric barrier discharge low-temperature plasma nonequilibrium plasma redox processes transition metals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yakushin, R.V., Kolesnikov, V.A., Babusenko, E.S., Brodskii, V.A., and Chistolinov, A.V., Voda: Khim. Ekol., 2016, no. 9, p.89.Google Scholar
  2. 2.
    Yakushin, R.V., Chistolinov, A.V., Kolesnikov, V.A., and Brodskii, V.A., RU Patent No. 173849, Byull. Izobret., no. 26 (2017).Google Scholar
  3. 3.
    Yakushin, R.V., Kolesnikov, V.A., Brodskii, V.A., Ofitserov, E.N., and Chistolinov, A.V., Russ. J. Appl. Chem., 2015, vol. 88, no. 8, p. 1338.CrossRefGoogle Scholar
  4. 4.
    Kolesnikov, V.A., Yakushin, R.V., Brodskii, V.A., Babusenko, E.S., and Chistolinov, A.V., Gig. Sanit., 2016, vol. 95, no. 6, p.588.Google Scholar
  5. 5.
    Sires, I., Brillas, E., Oturan, M.A., Rodrigo, M.A., and Panizza, M., Environ. Sci. Pollut. Res., 2014, vol. 21, no. 14, p. 8336.CrossRefGoogle Scholar
  6. 6.
    Cheng, J., Liu, Z., Yang, L., Han, L., Wei, Y., and Chen, Q., Front. Environ. Sci., 2016, vol. 5, no. 2, p.32.Google Scholar
  7. 7.
    Cheng, H.H., Chen, S.S., Yoshizuka, K., and Chen, Y.C., J. Water Chem. Technol., 2012, vol. 34, no. 4, p.179.CrossRefGoogle Scholar
  8. 8.
    Pekárek, S., Plasma Chem. Plasma Process., 2017, vol. 37, no. 5, p. 1313.CrossRefGoogle Scholar
  9. 9.
    Yue, Y.F., Mohades, S., Laroussi, M., and Lu, X., IEEE Trans. Plasma Sci., 2016, vol. 44, no. 11, p. 2754.CrossRefGoogle Scholar
  10. 10.
    Yi, Y., Wang, L., Li, G., and Guo, H., Catal. Sci. Technol., 2016, vol. 6, no. 6, p. 1593.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • R. V. Yakushin
    • 1
  • V. A. Kolesnikov
    • 1
  • V. A. Brodskiy
    • 1
  • E. N. Ofitserov
    • 1
  • A. V. Chistolinov
    • 1
  • A. V. Perfil’eva
    • 1
  • I. N. Solov’eva
    • 1
  • G. I. Kandelaki
    • 1
  1. 1.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations