Advertisement

High Energy Chemistry

, Volume 52, Issue 2, pp 138–144 | Cite as

Study of Gamma-Irradiated Polyamide Using Thermomechanical Spectrometry and Radiothermoluminescence

  • Yu. A. Olkhov
  • S. R. Allayarov
  • V. G. Nikolskii
  • M. K. Asamov
Radiation Chemistry
  • 13 Downloads

Abstract

The molecular–topological structure of polyamide before and after γ-irradiation has been first studied by thermomechanical spectrometry. The γ-irradiation with a dose up to 300 kGy does not change the topological structure of the polymer, the four-block pseudo-network structure of which contains crystalline segments of macromolecules and polyassociative entities of the cluster type in addition to low-and high-temperature amorphous blocks. During irradiation, only interblock mass transfer of the chain segments occurs, resulting in different dose-dependent values for the molecular weight of the chains, their weight fraction in each topological block, and the glass transition and molecular flow temperatures of the polymer. Radiothermoluminescence curves exhibit three maxima at 152, 200, and 330 K, of which the last one is detected in a temperature region close to the glass transition temperature of the high-temperature amorphous block on the thermomechanical analysis curve of the polymer.

Keywords

polyamide γ-irradiation thermomechanical analysis radiothermoluminescence molecular–topological structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Entsiklopediya polimerov (Encyclopedia of Polymers), Kabanov, V.A., Akutin, M.S., and Bakeev, N.F., Eds., Moscow: Sovetskaya Entsiklopediya, 1974, vol.2.Google Scholar
  2. 2.
    Garbar, M.I., Akutin, M.S., and Egorova, N.M., Spravochnik po plasticheskim massam (Plastics Handbook), Moscow: Khimiya, 1967.Google Scholar
  3. 3.
    Bazarov, Yu.M., Mizerovskii, L.N., Kolobkov, A.S., and Silant’eva, V.G., RU Patent No. 2471817, Byull. Izobret., No. 1 (2013).Google Scholar
  4. 4.
    Katsnel'son, I.Yu. and Balaev, G.A., Plasticheskie massy: Svoistva i primenenie: spravochnik (Plastics Handbook: Properties and Applications), Leningrad: Khimiya, 1978.Google Scholar
  5. 5.
    Pavlov, N.N., Starenie plastmass v estestvennykh i iskusstvennykh usloviyakh (Aging of Polymers under Natural and Artificial Conditions), Moscow: Khimiya, 1982.Google Scholar
  6. 6.
    Milinchuk, V.K., Soros. Obrazov. Zh., 2000, vol. 6, no. 4, p.24.Google Scholar
  7. 7.
    Tikhomirov, N.S., Bol’shakova, N.I., Utyanskii, Z.S., and Serenkov, V.I., Radiatsionnaya khimiya polimerov (Radiation Chemistry of Polymers), Karpov, V.L., Ed., Moscow: Nauka, 1966, p.349.Google Scholar
  8. 8.
    Entsiklopediya polimerov (Encyclopedia of Polymers), Kabanov, V.A., Akutin, M.S., and Bakeev, N.F., Eds., Moscow: Sovetskaya Entsiklopediya, 1977, vol. 3, p.253.Google Scholar
  9. 9.
    Plasticheskie massy. Sbornik trudov Nauchno-issledovatel’skogo instituta plasticheskie massy (NIIPM) (Plastics: Transactions of the NIIPM Plastic Research Institute) Pashkov, A.B., Ed., Moscow: Khimiya, 1970.Google Scholar
  10. 10.
    Genel', S.V., Belyi, V.A., Bulgakov, V.Ya., and Gekhtman, G.A., Primenenie polimernykh materialov v kachestve pokrytii (Polymers as Coating Materials), Moscow: Khimiya, 1968.Google Scholar
  11. 11.
    Ol'khov, Yu.A., Allayarov, S.R., and Kochetkova, G.V., Soedinenie ftora. Khimiya, tekhnologiya, primenenie (Fluorine Compounds: Chemistry, Technology, and Applications), Maksimov, B.N., Manuilov, V.I., and Kornilov, V.V. Eds., St. Petersburg: Teza, 2009, p.227.Google Scholar
  12. 12.
    Ol'khov, Yu.A., Allayarov, S.R., Kochetkova, G.V., and Dixon, D.A., Plast. Massy, 2010, p.4.Google Scholar
  13. 13.
    Olkhov, Yu.A., Allayarov, S.R., Nikolskii, V.G., and Dixon, D.A., High Energy Chem., 2013, vol. 47, no. 3, p.90.CrossRefGoogle Scholar
  14. 14.
    Olkhov, Yu.A., Allayarov, S.R., Nikolskii, V.G., and Dixon, D.A., High Energy Chem., 2011, vol. 45, no. 2, p.104.CrossRefGoogle Scholar
  15. 15.
    Nikolskii, V.G., Allayarov, S.R., and Dixon, D.A., Khim. Vys. Energ., 2013, vol. 47, p.339.Google Scholar
  16. 16.
    Jurkowski, B. and Olkhov, Y.A., Thermochimica Acta, 2004, vol. 414, p.243.CrossRefGoogle Scholar
  17. 17.
    Olkhov, Y.A. and Jurkovski, B., J. Therm. Anal. Calorim., 2005, vol. 81, p.489.CrossRefGoogle Scholar
  18. 18.
    Ferry, J., Viscoelastic Properties of Polymers, New York: Wiley, 1963.Google Scholar
  19. 19.
    Simha, R. and Boyer, R.F., J. Chem. Phys., 1962, vol. 37, no. 5, p. 1003.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. A. Olkhov
    • 1
  • S. R. Allayarov
    • 1
  • V. G. Nikolskii
    • 2
  • M. K. Asamov
    • 3
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Faculty of ChemistryUlugbek National University of UzbekistanTashkentUzbekistan

Personalised recommendations