High Energy Chemistry

, Volume 52, Issue 2, pp 157–166 | Cite as

Structure and Dynamics of Ternary Complexes of Cucurbit[8]uril with Spin-Labeled Indicators and Biologically Active Analytes

  • V. A. LivshitsEmail author
  • B. B. Meshkov
  • R. F. Gabidinova
  • V. G. Avakyan
  • M. V. Alfimov
Nanosized and Supramolecular Systems


Ternary host–guest complexes have been first obtained from cucurbituril CB[8] as a host molecule and two guest molecules: nitroxyl probes of different structures and biologically important amino acids (AA) and aromatic compounds. To characterize the binding of the guests, parameters of the polarity of the environment and the rotational mobility of the spin probes have been used. These parameters have been shown to depend on the nature of the analytes. For the ternary complexes, in addition to the usual triplet ESR spectra from nitroxyl probes (S3), supramolecular ensembles consisting of three equivalent ternary complexes (“triads”) have been found, whose ESR spectra have a seven-component hyperfine structure (S7) due to delocalization of the unpaired electron over three nitrogen nuclei. The relative intensity of the S7 spectra increases with increasing NaCl concentration in the solution, and also depends significantly on the nature of the analyte and the spin probe. Quantum chemical calculations have shown that (1) to determine the stability of the complexes, it is necessary to allow for the van der Waals interaction, and (2) the complexes involving the zwitterionic form of AA are much more stable than those with the neutral form of AA.


cucurbituril CB[8] host–guest complexes ternary complexes nitroxyl radicals chemosensors ESR spectra amino acids calculations by the PM3 and PM6 methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lagona, J., Mukhopadhayay, P., Chakabarty, S., and Isaacs, L., Angew. Chem., 2005, vol. 117, p. 4922.CrossRefGoogle Scholar
  2. 2.
    Isaacs, L., Chem. Commun., 2009, p.619.Google Scholar
  3. 3.
    Dsouza, R.N., Pischel, U., and Nau, W.M., Chem. Rev., 2011, vol. 111, p. 7941.CrossRefGoogle Scholar
  4. 4.
    Wagner, B.D., Stojanovic, N., Day, A.I., and Blanch, R.J., J. Phys. Chem. B, vol. 2003, p. 10741.Google Scholar
  5. 5.
    Bhasikutttan, A.C., Choudry, S.D., Pal, H., and Mohanty, J., Isr J. Chem., 2011, vol. 51, p.634.CrossRefGoogle Scholar
  6. 6.
    Ko, Y.H., Kim, K., Kang, J.K., Chun, H., Lee, J.W., Sakamoto, S., Yamaguchi, K., Fettinger, J.C., and Kim, K., J. Am. Chem. Soc., 2004, vol. 126, p. 1932.CrossRefGoogle Scholar
  7. 7.
    Jeon, W.S., Ziganshina, A.Y., Lee, J.W., Ko, Y.H., Kang, J.K., Lee, C., and Kim, K., Angew. Chem., 2003, vol. 115, p. 4231.CrossRefGoogle Scholar
  8. 8.
    Buschmann, H.J., Cleve, E., Jansen, K., Wego, A., and Schollmeyer, E., J. Incl. Phenom. Macrocycl. Chem., 2001, vol. 40, p.117.CrossRefGoogle Scholar
  9. 9.
    Ong, W. and Kaifer, A.F., Org. Chem., 2004, vol. 69, p. 1383.CrossRefGoogle Scholar
  10. 10.
    Kelly, T.R., de Silva, H., and Silva, R.A., Nature, 1999, vol. 401, p.150.CrossRefGoogle Scholar
  11. 11.
    Jeon, Y.J., Kim, H., Jon, S., Selvapalan, N., Oh, D.H., Seo, I., Park, C.S., Jung, S.R., Koh, D.S., and Kim, K., J. Am. Chem. Soc., 2004, vol. 126, p. 15944.CrossRefGoogle Scholar
  12. 12.
    Lee, J.W., Kim, S.Y., Kim, H.J., and Kim, K., Angew. Chem. Int. Ed., 2005, vol. 44, p.87.CrossRefGoogle Scholar
  13. 13.
    Rauwald, U., Biedermann, F., Deroo, S., and Robinson, C.V., and Scherman, O.A., J. Phys. Chem., 2010, vol. 114, no. 26, p. 8606.CrossRefGoogle Scholar
  14. 14.
    Mezzina, E., Cruciani, F., Pedulli, G.F., and Lucarini, M., Chem.-Eur. J., 2007, p. 7223.Google Scholar
  15. 15.
    Bush, M.E., Bouley, N.D., and Urbach, A.R., J. Am. Chem. Soc., 2005, vol. 127, p. 14511.CrossRefGoogle Scholar
  16. 16.
    Reczek, J.J., Kennedy, A.A., Halbert, B.T., and Urbach, A.R., J. Am. Chem. Soc., 2009, vol. 131, p. 2408.CrossRefGoogle Scholar
  17. 17.
    Livshits, V.A., Dzikovski, B.G., Samardak, E.A., and Alfimov, M.V., Russ. Chem. Bull., 2006, vol. 55, p.238.CrossRefGoogle Scholar
  18. 18.
    Livshits, V.A., Demisheva, I.V., Dzikovski, B.G., Avakian, V.G., and Alfimov, M.V., Russ. Chem. Bull., 2006, vol. 55, no. 12, p. 2161.CrossRefGoogle Scholar
  19. 19.
    Rozantsev, E.G., Svobodnye iminoksil’nye radikaly (Free Iminoxyl Radicals), Moscow: Khimiya, 1970.Google Scholar
  20. 20.
    Spin Labeling: Theory and Applications, Berliner, L, Ed., New York: Academic, 1976.Google Scholar
  21. 21.
    Raigariah, P. and Urbach, A.R., J. Incl. Phenom. Macrocycl. Chem., 2008, vol. 62, p.251.CrossRefGoogle Scholar
  22. 22.
    Bardelang, D., et al., J. Am. Chem. Soc., 2009, vol. 131, p. 5402.CrossRefGoogle Scholar
  23. 23.
    Jayarai, N., Porel, M., Ottaviani, F., Maddipatla, M.V.S.N., Modelli, A., Da Silva, J.P., Bohogala, B.R., Captain, B., Jockusch, S., Turro, N.J., and Ramamurthy, V., Langmuir, 2009, vol. 25, no. 24, p. 13632.Google Scholar
  24. 24.
    (a) Maia, J.D.C., et al., J. Chem. Theory Comput., 2012, vol. 8, p. 3072CrossRefGoogle Scholar
  25. 24a.
    (b)Stewart, J.J.P., MOPAC 2012, Version 1.038W, Colorado Springs, CO: Stewart Computational Chemistry, 2012. Scholar
  26. 25.
    Biochemistry, Berg, J.M., Tymoczko, J.L. and Stryer, L., New York: W. H. Freeman and Company, 2006, 6th ed., ch. 02.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Livshits
    • 1
    • 2
    Email author
  • B. B. Meshkov
    • 1
  • R. F. Gabidinova
    • 2
  • V. G. Avakyan
    • 1
  • M. V. Alfimov
    • 1
    • 2
  1. 1.Photochemistry Center, Crystallography and Photonics Federal Research CenterRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations