High Energy Chemistry

, Volume 52, Issue 2, pp 152–156 | Cite as

Effect of γ-Radiation on the Structural and Conducting Properties of Copper Nanotubes

  • A. L. KozlovskiiEmail author
  • M. V. Zdorovetsa
Radiation Chemistry


The influence of γ-radiation on the structural and conducting properties of copper nanotubes, obtained by electrochemical synthesis in pores of on polyethylene terephthalate-based template matrices, has been studied. With the use of scanning electron microscopy, X-ray diffraction analysis, and electron diffraction analysis, it has been established that irradiation with γ-rays at doses of 50 and 100 kGy makes it possible to modify the crystal structure of the nanotubes, increasing their conductivity and decreasing the resistance of the nanosized entities without destroying their structure.


template synthesis ion track technology electrochemical deposition nanotubes nanostructures growth mechanisms radiation defects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhao, Y., Sadat, M.E., Dunn, A., Xu, H., Chien-Hung, Chen., Nakasuga, W., and Rodney, C., Solar Energy Mater. Solar Cells, 2017, vol. 161, p.247.CrossRefGoogle Scholar
  2. 2.
    Deiss, E., Holzer, F., and Hass, O., Electrochim. Acta, 2002, vol. 47, p. 3995.CrossRefGoogle Scholar
  3. 3.
    Wang, J.G., Tian, M.L., Kumar, N., and Mallouk, T.E., Nano Lett., 2005, vol. 5, p. 1247.CrossRefGoogle Scholar
  4. 4.
    Wang, J.G. and Tian, M.L., Microsc. Microanal., 2004, vol. 10, p.358.CrossRefGoogle Scholar
  5. 5.
    Lu, L., Sui, M.L., and Lu, K., Science, 2000, vol. 287, p. 1463.CrossRefGoogle Scholar
  6. 6.
    Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., and Thompson, L.J., Appl. Phys. Lett., 2001, vol. 78, p.7.CrossRefGoogle Scholar
  7. 7.
    Zdorovets, M.V., Ivanov, I.A., Aleksandrenko, V.V., and Kozin, S.G., Her. L.N. Gumilyov Eurasian Natl. Univ., 2013, vol. 97, p.189.Google Scholar
  8. 8.
    Zdorovets, M., Ivanov, I., Alexandrenko, V.;., Sambaev, E., and Physics, N., Proceedings of the 24th Russian Particle Accelerator Conference (RuPAC2014), 6–10 October 2014, Obninsk, p.287.Google Scholar
  9. 9.
    Kozlovskiy, A.L., Zdorovets, M.V., Kaniukov, E.Y., Shumskaya, E.E., and Yakimchuk, D.V., J. Contemp. Phys, 2017, vol. 52, p.155.CrossRefGoogle Scholar
  10. 10.
    Kaniukov, E., Kozlovsky, A., Shlimas, D., Yakimchuk, D., Zdorovets, M., and Kadyrzhanov, K., IOP Conf. Ser. Mater. Sci. Eng., 2016, vol. 110, p. 12013.CrossRefGoogle Scholar
  11. 11.
    Komarov, F.F., Phys.-Usp., 2003, vol. 46, p. 1253.CrossRefGoogle Scholar
  12. 12.
    Juraszek, J., Fnidiki, A., Teillet, J., and Toulemonde, M., Phys. Rev. B: Condens. Matter, 2000, vol. 61, p.12.CrossRefGoogle Scholar
  13. 13.
    Nagel, R. and Balogh, A., Nucl. Instrum. Methods Phys. Res., Sect. B, 1999, vol. 156, p. 135.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Nuclear PhysicsAlmatyKazakhstan
  2. 2.Gumilyov Eurasian National UniversityAstanaKazakhstan
  3. 3.Urals Federal UniversityYekaterinburgRussia

Personalised recommendations