Skip to main content
Log in

Synthesis of 28SiC from 28SiF4 and Methane in Radiofrequency (13.56 MHz) Arc Hydrogen Plasma

  • Plasma Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Some features of atmospheric-pressure radiofrequency (13.56 MHz) arc discharge and its use for obtaining bulk samples of isotope-enriched silicon carbide via the reaction between SiF4 and methane in a hydrogen medium have been considered. It has been shown that power in this type of discharge is released mainly in the near-electrode regions. The deposition of silicon and graphite occurs in a layer-by-layer mode, so that the product carbide contains up to 40% free carbon; therefore, the process requires optimization. At the same time, the proposed type of RF arc discharge with the product deposition zone localized at the ends of the electrodes makes it possible to avoid not only additional heating of the reactor space and walls, but also the loss of expensive isotope-enriched silicon fluoride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kut’in, A.M., Polyakov, V.S., and Sennikov, P.G., Abstracts of Papers, V Mezhdunarodnaya konferentsiya “Kremnii 2008” (Silicon’2008 V International Conference), Chernogolovka: Granitsa, 2008, p.178.

    Google Scholar 

  2. Vodopyanov, V.A., Golubev, S.V., Mansfeld, D.A., Sennikov, P.G., and Drozdov, Yu.N., Rev. Sci. Instrum., 2011, vol. 82, p. 063503.

    Article  CAS  Google Scholar 

  3. Sennikov, P.G., Golubev, S.V., Kornev, R.A., Mochalov, L.A., Kossiy, I.A., and Davidov, A.M., Proceedings of VIII International Workshop “Microwave Discharges: Fundamentals and Applications, Zvenigorod, September 10–14, 2012, p.243.

  4. Sennikov, P.G., Golubev, S.V., Kornev, R.A., and Mochalov, L.A., High Energy Chem., 2014, vol. 48, no. 1, p.49.

    Article  CAS  Google Scholar 

  5. Sennikov, P.G., Golubev, S.V., Shashkin, V.I., Pryakhin, D.A., and Abrosimov, N.V., Perspekt. Mater., Spetsial. Vyp., 2011, no. 10, p.160.

    Google Scholar 

  6. Kornev, R.A., Sennikov, P.G., Konychev, D.A., Potapov, A.M., Chuvilin, D.Yu., Yunin, P.A., Gusev, S.A., and Naumann, M., J. Radioanal. Nucl. Chem., 2016, vol. 309, no. 2, p.833.

    CAS  Google Scholar 

  7. Sennikov, P.G., Kornev, R.A., and Shishkin, A.I., Plasma Chem. Plasma Process., 2017, vol. 37, no. 4, p.997.

    Article  CAS  Google Scholar 

  8. Spiazzi, G., Buso, S., Citron, M., Corradin, M., and Pierobon, R., IEEE Trans. Power Electron., 2003, vol. 18, no. 6, p. 1249.

    Article  Google Scholar 

  9. Ferroni, L.P., Pezzotti, G., Isshiki, T., and Kleebe, H.J., Acta Mater., 2001, vol. 49, no. 11, p. 2109.

    Article  CAS  Google Scholar 

  10. Anya, C.C., J. Mater. Sci., 1999, vol. 34, no. 22, p. 5557.

    Article  CAS  Google Scholar 

  11. Baron, B., Kumar, C. S., Le Gonidec, G., and Hampshire, S., J. Eur. Ceram. Soc., 2002, vol. 22, no. 9/10, p. 1543.

    Article  CAS  Google Scholar 

  12. Weimer, A.W. and Bordia, R.K., Composites, Part B: Eng., 1999, vol. 30, no. 7, p.647.

    Article  Google Scholar 

  13. Noda, T., Suzuki, H., and Araki, H., Fusion Eng. Des., 1998, vol. 41, p.173.

    Article  CAS  Google Scholar 

  14. Raizer, Yu.P., Gas Discharge Physics, Berlin: Springer, 1991.

    Book  Google Scholar 

  15. Yanin, D.V., Kostrov, A.V., Smirnov, A.I., Gushchin, M.E., Korobkov, S.V., Strikovskii, A.V., Gundorin, V.I., Nazarov, V.V., and Starodubtsev, M.V., Tech. Phys., 2012, vol. 57, no. 4, p.468.

    Article  CAS  Google Scholar 

  16. Newman, C., Polo, S.R., and Wilson, M.K., Spectrochim. Acta, 1959, vol. 10, p.793.

    Article  Google Scholar 

  17. Bürger, H., Biedermann, S., and Ruoff, A., Spectrochim. Acta, 1971, vol. 27, p. 1687.

    Article  Google Scholar 

  18. D’Eu, J.-F., Demaison, J., and Bürger, H., J. Mol. Spectrosc., 2003, vol. 218, p.12.

    Article  Google Scholar 

  19. Newman, C., Kenneth O’Loane, J., et al, J. Chem. Phys., 1956, vol. 25, no. 5, p.855.

    Article  CAS  Google Scholar 

  20. Robiette, A.G. Cartwright, G.J., et al., Mol. Phys., 1971, vol. 20, no. 3, p.541.

    Article  CAS  Google Scholar 

  21. Bürger, H. and Schulz, P., J. Mol. Spectrosc., 1987, vol. 125, no. 1, p. 140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Kornev.

Additional information

Original Russian Text © R.A. Kornev, P.G. Sennikov, V.V. Nazarov, A.D. Bulanov, A.M. Potapov, 2018, published in Khimiya Vysokikh Energii, 2018, Vol. 52, No. 2, pp. 171–176.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornev, R.A., Sennikov, P.G., Nazarov, V.V. et al. Synthesis of 28SiC from 28SiF4 and Methane in Radiofrequency (13.56 MHz) Arc Hydrogen Plasma. High Energy Chem 52, 189–193 (2018). https://doi.org/10.1134/S001814391802008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001814391802008X

Keywords

Navigation