Advertisement

High Energy Chemistry

, Volume 52, Issue 2, pp 171–182 | Cite as

Hydrogen Peroxide Formation in Boiling Water Plasma of Electrolyte-Cathode Discharge

  • E. S. Bobkova
  • A. V. Tatarinov
  • E. V. Ivanov
  • P. A. Gushchin
Plasma Chemistry

Abstract

A mechanism is proposed for the formation of hydrogen peroxide in an electrolyte-cathode atmospheric-pressure direct-current discharge. A local increase in the temperature of water in the area of liquid contact with the gas discharge causes its boiling, and strong electric fields due to unevenness of the turbulent surface appear on the splashes. As a result, a local breakdown of the hemispherical region of boiling water beneath the electrolyte-cathode spot is possible. The kinetic scheme of the reactions for water vapor plasma has been considered, and hydrogen peroxide concentrations have been calculated, the calculation results being in satisfactory agreement with experimental data.

Keywords

direct-current discharge hydrogen peroxide water vapor plasma kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rybkin, V.V., Titov, V.A., Chumadova, E.S., and Shikova, T.G., Izv. Vyssh. Uchebn. Zaved.: Khim. Khim. Tekhnol., 2008, vol. 51, no. 11, p.29.Google Scholar
  2. 2.
    Medodovic, S., Thagard, S.M., Takashima, K., and Mizuno, A., Plasma Chem. Plasma Process., 2009, vol. 29, no. 6, p.455.CrossRefGoogle Scholar
  3. 3.
    Shih, K.Y. and Locke, B.R., Plasma Chem. Plasma Process., 2010, vol. 30, no. 1, p.1.CrossRefGoogle Scholar
  4. 4.
    Du, Ch.M., Sun, Y.W., and Zhuang, X.F., Plasma Chem. Plasma Process., 2008, vol. 28, no. 4, p.523.CrossRefGoogle Scholar
  5. 5.
    Wang, L., Plasma Chem. Plasma Process., 2009, vol. 29, no. 3, p.241.CrossRefGoogle Scholar
  6. 6.
    Liu, Y. and Jiang, X., Plasma Chem. Plasma Process., 2008, vol. T. 28, no. 1, p. C.15.CrossRefGoogle Scholar
  7. 7.
    Bobkova, E.S., Shikova, T.G., Grinevich, V.I., and Rybkin, V.V., High Energy Chem., 2012, vol. 46, no. 1, p.56.CrossRefGoogle Scholar
  8. 8.
    Itikawa, Y. and Mason, N., J. Phys. Chem. Ref. Data, 2005, vol. 34, no. 1, p.1.CrossRefGoogle Scholar
  9. 9.
    Avtaeva, S., General, A., and Kel’man, V., J. Phys. D: Appl. Phys., 2010, vol. 43, p. 315201.CrossRefGoogle Scholar
  10. 10.
    Polyakov, O.V., Badalyan, A.M., and Bakhturova, L.F., High Energy Chem., 2003, vol. 37, no. 5, p.322.CrossRefGoogle Scholar
  11. 11.
    Maksimov, A.I. and Nikiforov, A.Yu., High Energy Chem., 2007, vol. 41, no. 6, p.454.CrossRefGoogle Scholar
  12. 12.
    Medodovic, S. and Locke, B., J. Phys. D: Appl. Phys., 2009, vol. 42, p. 049801.CrossRefGoogle Scholar
  13. 13.
    Rehman, F., Lozano-Parada, J.H., and Zimmerman, W.B., Int. J. Hydrogen Energy, 2012, vol. 37, p. 17678.CrossRefGoogle Scholar
  14. 14.
    Hagelaar, G.J.M. and Pitchford, L.C., Plasma Sources Sci. Technol., 2005, vol. 14, p.722.CrossRefGoogle Scholar
  15. 15.
    Lozano-Parada, J.H. and Zimmerman, W.B., Chem. Eng. Sci., 2010, vol. 65, no. 17, p. 4925.CrossRefGoogle Scholar
  16. 16.
    www.comsol.com.Google Scholar
  17. 17.
    www.kinetics.nist.gov.Google Scholar
  18. 18.
    Ardelyan, N.V., Bychkov, V.L., Bychkov, D.V., and Kosmachevskii, K.V., Plasma Assisted Combustion, Gasification and Pollution Control, Matveev, I.D., Ed., Denver, Colo.: Outskirts, 2013, vol. 1, p. 183.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. S. Bobkova
    • 1
  • A. V. Tatarinov
    • 2
  • E. V. Ivanov
    • 1
  • P. A. Gushchin
    • 1
  1. 1.Russian Gubkin State University of Oil and Gas (National Research University)MoscowRussia
  2. 2.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations