High Energy Chemistry

, Volume 52, Issue 2, pp 117–122 | Cite as

Primary Photoprocesses in Thionine in Supramolecular Complexes with Cucurbit[7,8]urils in Water

  • L. S. AtabekyanEmail author
  • V. G. Avakyan
  • G. V. Zakharova
  • A. K. Chibisov


Thionine (ThH+) molecules form monomeric ThH+@CB7 (1: 1) and dimeric 2ThH+@CB8 (2: 1) complexes with cucurbit[7,8]urils (CB7) and (CB8) in water. Unlike the case free ThH+ molecules, the absorption spectrum of the complexes is characterized by a hypsochromic shift of the maximum by 6 and 41 nm for ThH+@CB7 and 2ThH+@CB8, respectively. The ThH+@CB7 complexes exhibit fluorescence, unlike the nonfluorescing 2ThH+@CB8 complexes. The monomeric complexes undergo intersystem crossing to the triplet state with a lifetime of 14 μs. The dimeric complexes have a very low quantum yield of the triplet state. The triplet state of the dimeric complexes was populated by photosensitized excitation by triplet–triplet energy transfer. The lifetime of the triplet state is ≈50 μs.


thionine cucurbit[7,8]urils absorption fluorescence pulse laser photolysis triplet states quantum-chemical calculations dimeric complex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Terenin, A.N., (Photonics of Dyes and Related Organic Compounds), Leningrad: Nauka, 1967.Google Scholar
  2. 2.
    Wildes, P.D., Lichtin, N.N., Hoffman, M.Z., Andrews, L., and Linschitz, H., Photochem. Photobiol., 1977, vol. 25, no. 1, p.21.CrossRefGoogle Scholar
  3. 3.
    Vogelmann, E. and Kramer, H.E.A., Photochem. Photobiol., 1976, vol. 23, no. 6, p.383.CrossRefGoogle Scholar
  4. 4.
    Korobov, V.E. and Chibisov, A.K., Usp. Khim., 1983, vol. 52, no. 1, p.43.CrossRefGoogle Scholar
  5. 5.
    Nau, W.M. and Scherman, O.A., Isr. J. Chem., 2011, vol. 51, nos. 5/6, p.492.Google Scholar
  6. 6.
    Dsouza, R.N., Pischel, U., and Nau, W.M., Chem. Rev., 2011, vol. 111, no. 12, p. 7941.CrossRefGoogle Scholar
  7. 7.
    Zakharova, G.V., Avakyan, V.G., Chibisov, A.K., and Alfimov, M.V., High Energy Chem., 2017, vol. 51, no. 3, p.195.CrossRefGoogle Scholar
  8. 8.
    Zakharova, G.V., Zhizhimov, D.A., Avakyan, V.G., et al., High Energy Chem., 2014, vol. 48, no. 2, p.76.CrossRefGoogle Scholar
  9. 9.
    Bhasikuttan, A.C., Choudhury, S.D., Pal, H., and Mohanty, J., Isr. J. Chem., 2011, vol. 51, nos. 5-6, p.634.CrossRefGoogle Scholar
  10. 10.
    Montes-Navajas, P., Corma, A., and Garcia, H., Chem. Phys. Chem., 2008, vol. 9, p.713.CrossRefGoogle Scholar
  11. 11.
    Montes-Navajas, P. and Garcia, H., Photochem. Photobiol., 2009, vol. 204, p.97.CrossRefGoogle Scholar
  12. 12.
    Xi, Y.Y., Tang, Q., Huang, Y., Tao, Z., Xue, S.F., and Zhu, Q.J., Spectrosc. Spectral Anal., 2016, vol. 36, no. 6, p. 1809.Google Scholar
  13. 13.
    Zakharova, G.V., Avakyan, V.G., Markelov, V.P, et al., High Energy Chem., 2015, vol. 49, no. 6, p.407.CrossRefGoogle Scholar
  14. 14.
    Maia, J.D.C., Urquiza, C., Gabriel, A., et al., J. Chem. Theory Comput., 2012, vol. 8, no. 9, p. 3072.CrossRefGoogle Scholar
  15. 15.
    Stewart, J.J.P., MOPAC2012, Version 15.036W, Colorado Springs, Stewart Computational Chemistry, 2012. http: Scholar
  16. 16.
    Kramer, H.E.A., Photosensibilisierte Sauerstoffubertragung nach einem Redoxmechanismus: Das System Thionin, 18Allylthioharnstoff und Sauerstoff, Doctor Dissertation, Stuttgart, 1970.Google Scholar
  17. 17.
    Lee, J.W., Samal, S., Selvapalam, N., et al., Acc. Chem. Res., 2003, vol. 36, no. 8, p.621.CrossRefGoogle Scholar
  18. 18.
    Zakharova, G.V., Gutrov, V.N., Plotnikov, V.G., et al., High Energy Chem., 2017, vol. 51, no. 5, p.345.CrossRefGoogle Scholar
  19. 19.
    Zakharova, G.V., Gutrov, V.N., Alfimov, M.V., and Chibisov, A.K., High Energy Chem., 2017, vol. 51, no. 5, p. 404.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. S. Atabekyan
    • 1
    Email author
  • V. G. Avakyan
    • 1
  • G. V. Zakharova
    • 1
  • A. K. Chibisov
    • 1
  1. 1.Photochemistry Center, Russian, Crystallography and Photonics Federal Research CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations