Skip to main content
Log in

Constraining Age of Deformation Stages in the South-Western Part of Verkhoyansk Fold-and-Thrust Belt by Apatite and Zircon Fission-Track Analysis

  • Published:
Geotectonics Aims and scope

Abstract—Zircon fission track analysis was carried out for Mesoproterozoic to Lower Paleozoic sedimentary rocks of the South-Verkhoyansk sector of the Verkhoyansk fold-and-thrust belt. The age of thrusting stages was constrained in this region. The early stage of deformations dated as 160 Ma, the main stage dated as from 70 to 90 Ma. Thermal history modeling on apatite allowed us to establish the youngest stage of erosion from 20 to 30 Ma, which indirectly indicates the reactivation of tectonic processes in the region at the boundary of Paleogene and Neogene. The degree of heating of the rocks increases in the east direction, and if in the frontal zone the fission tracks were annealed only in apatite, then in the Sette-Daban zone fission tracks were annealed both in apatite and in zircon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. V. Malyshev, A. K. Khudolei, U. A. Glasmakher, and A. V. Shatsillo, “Results of fission track dating of detrital apatites (AFT) from sandstones of the Kyllakh zone, South Verkhoyansk region,” in Tectonics, Geodynamics, and Ore Genesis of Fold Belts and Platforms: Proceedings of the XLVIII Meeting on Tectonics (GEOS, Moscow, 2016), Vol. 1, pp. 355–357.

  2. S. V. Malyshev, A. K. Khudoley, A. V. Prokopiev, V. B. Ershova, G. G. Kazakova, and L. B. Terentyeva, “Source rocks of Carboniferous–Lower Cretaceous terrigenous sediments of the northeastern Siberian Platform: Results of Sm–Nd isotope-geochemical studies,” Russ. Geol. Geophys. 57, 421–433 (2016).

    Article  Google Scholar 

  3. L. M. Parfenov, Continental Margins and Island Arcs of Mesozoides in Northeast Asia (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  4. L. M. Parfenov, A. V. Prokop’ev, and V. B. Spektor, “Relief of the Earth’s surface and its evolution,” in Tectonics, Geodynamics, and Metallogeny of the Territory of Sakha Republic (Yakutia), Ed. by L. M. Parfenov and M. I. Kuz’min (MAIK Nauka/Interperiodika, Moscow, 2001), pp. 12–32.

    Google Scholar 

  5. V. N. Podkovyrov, L. N. Kotova, A. B. Kotov, V. P. Kovach, O. V. Graunov, and N. Yu. Zagornaya, “Provenance and source rocks of Riphean sandstones in the Uchur–Maya region (East Siberia): Implications of geochemical data and Sm–Nd isotopic systematics,” Stratigr. Geol. Correl. 15, 41–56 (2007).

    Article  Google Scholar 

  6. A. V. Prokop’ev, Kinematics of the Mesozoic Folding in the Western Part of South Verkhoyansk Region (Yakutsk. Nauchn. Tsentr Sib. Otd. Akad. Nauk SSSR, Yakutsk, 1989) [in Russian].

    Google Scholar 

  7. A. V. Prokop’ev, L. M. Parfenov, M. D. Tomshin, and I. I. Kolodeznikov, “Sedimentary cover of the Siberian Platform and adjacent fold-and-thrust belts,” in Tectonics, Geodynamics, and Metallogeny of the Territory of Sakha Republic (Yakutia), Ed. by L. M. Parfenov and M. I. Kuz’min (MAIK Nauka/Interperiodika, Moscow, 2001), pp. 113–155.

    Google Scholar 

  8. A. V. Prokop’ev and A. V. Deikunenko, “Deformation structures of fold-and-thrust belts,” in Tectonics, Geodynamics, and Metallogeny of the Territory of Sakha Republic (Yakutia), Ed. by L. M. Parfenov and M. I. Kuz’min (MAIK Nauka/Interperiodika, Moscow, 2001), pp. 156–198.

    Google Scholar 

  9. A. V. Prokop’ev, H. Toro, T. A. Dumitru, E. L. Miller, and D. K. Khourigan, “Formation history of thrust structures in South Verkhoyansk region (Eastern Yakutia) on the basis of fission track dating method (AFTA),” in Evolution of Tectonic Processes in the Earth’s History: Proceedings of the XXXVII Meeting on Tectonics (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2004), Vol. 2, pp. 86–88.

  10. M. A. Semikhatov and S. N. Serebryakov, Siberian Hypostratotype of the Riphean (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  11. S. D. Sokolov, “Tectonics of Northeast Asia: An overview,” Geotectonics 44, 493–509 (2010).

    Article  Google Scholar 

  12. A. V. Solov’ev, Studies of Tectonic Processes in Convergence Zones of Lithospheric Plates: Methods of Fission Track and Structural Analysis, Vol. 577 of Tr. Geol. Inst. Ross. Akad. Nauk (Nauka, Moscow, 2008) [in Russian].

  13. A. I. Starnikov, N. N. Pushkar’, G. A. Chernobrovkina, V. S. Grinenko, E. L. Mozalevskii, and L. N. Kovalyov, Geological Map of Yakutia (South Verkhoyansk Block), Scale 1 : 500 000 (VSEGEI, St. Petersburg, 1995).

  14. A. K. Khudolei, G. A. Gur’ev, and E. A. Zubareva, “Deposits of density flows in the Sette-Daban carbonate complex, South Verkhoyansk region,” Litol. Polezn. Iskop., No. 5, 106–116 (1991).

  15. V. A. Yan-Zhin-Shin, Tectonics of the Sette-Daban Horst–Anticlinorium (Yakutsk. Fil. Sib. Otd. Akad. Nauk SSSR, Yakutsk, 1983) [in Russian].

    Google Scholar 

  16. O. V. Yapaskurt, Lithogenesis and Mineral Resources of Miogeosynclines (Nedra, Moscow, 1992) [in Russian].

    Google Scholar 

  17. B. Andreucci, A. Castelluccio, S. Corrado, L. Jankowski, S. Mazzoli, R. Szaniawski, and M. Zattin, “Interplay between the thermal evolution of an orogenic wedge and its retro-wedge basin: An example from the Ukrainian Carpathians,” Geol. Soc. Am. Bull. 127, 410–427 (2015).

    Article  Google Scholar 

  18. F. Bellemans, F. De Corte, and P. Van Den Haute, “Composition of SRM and CN U-doped glasses: Significance for their use as thermal neutron fluence monitors in fission track dating,” Radiat. Meas. 24, 153–160 (1995).

    Article  Google Scholar 

  19. A. Eude, M. Roddaz, S. Brichau, S. Brusset, Y. Calderon, P. Baby, and J. C. Soula, “Controls on timing of exhumation and deformation in the northern Peruvian eastern Andean wedge as inferred from low-temperature thermochronology and balanced cross section,” Tectonics 34, 715–730 (2015).

    Article  Google Scholar 

  20. I. Dunkl, “Trackkey: A Windows program for calculation and graphical presentation of fission track data,” Comput. Geosci. 28, 3–12 (2002).

    Article  Google Scholar 

  21. R. L. Fleisher, P. B. Price, and R. M. Walker, Nuclear Tracks in Solids (Univ. California Press, Berkeley, 1975).

  22. R. F. Galbraith, “The radial plot: Graphical assessment of spread in ages,” Nucl. Tracks Radiat. Meas. 17, 207–214 (1990).

    Article  Google Scholar 

  23. R. F. Galbraith and G. M. Laslett, “Statistical models for mixed fission track ages,” Nucl. Tracks Radiat. Meas. 21, 459–470 (1993).

    Article  Google Scholar 

  24. J. I. Garver, “Fission-track dating,” in Encyclopedia of Paleoclimatology and Ancient Environments, Ed. by V. Gornitz (Springer, Dordrecht, 2009), pp. 247–249.

    Google Scholar 

  25. A. J. W. Gleadow, “Fission track dating methods,” The 3rd School of Earth Sciences, Melbourne, Australia, 2007 (Univ. Melbourne, Melbourne, 2007), p. 74.

    Google Scholar 

  26. A. J. W. Gleadow and I. R. Duddy, “A natural long-term track annealing experiment for apatite,” Nucl. Tracks 5, 169–174 (1981).

    Article  Google Scholar 

  27. A. J. W. Gleadow, I. R. Duddy, P. F. Green, and J. F. Lovering, “Confined fission track lengths in apatite: A diagnostic tool for thermal history analysis,” Contrib. Mineral. Petrol. 94, 405–415 (1986).

    Article  Google Scholar 

  28. A. J. Hurford and P. F. Green, “The zeta age calibration of fission track dating,” Chem. Geol. 1, 285–317 (1983).

    Article  Google Scholar 

  29. R. A. Ketcham, “Forward and inverse modeling of low-temperature thermochronometry data,” Rev. Mineral. Geochem. 58, 275–314 (2005).

    Article  Google Scholar 

  30. A. K. Khudoley, R. H. Rainbird, R. A. Stern, A. P. Kropachev, L. M. Heaman, A. M. Zanin, V. N. Podkovyrov, V. N. Belova, and V. I. Sukhorukov, “Sedimentary evolution of the Riphean–Vendian basin of southeastern Siberia,” Precambrian Res. 111, 129–163 (2001).

    Article  Google Scholar 

  31. A. K. Khudoley and G. A. Guriev, “Influence of syn–sedimentary faults on orogenic structure: examples from the Neoproterozoic–Mesozoic east Siberian passive margin,” Tectonophysics 365, 23–43 (2003).

    Article  Google Scholar 

  32. A. K. Khudoley and A. V. Prokopiev, “Defining the eastern boundary of the North Asian craton from structural and subsidence history studies of the Verkhoyansk fold-and-thrust belt,” in Whence the Mountains? Inquiries into the Evolution of Orogenic Systems: A Volume in Honor of Raymond A. Price,Vol. 433 of Geol. Soc. Am., Spec. Pap., Ed. by J. W. Sears, T. A. Harms, and C. A. Evenchick (2007), pp. 391–410.

  33. G. M. Laslett, W. S. Kendall, A. J. W. Gleadow, and I. R. Duddy, “Bias in measurement of fission-track length distributions,” Nucl. Tracks Radiat. Meas. 6, 79–85 (1982).

    Article  Google Scholar 

  34. P. W. Layer, R. Newberry, K. Fujita, L. Parfenov, V. Trunilina, and A. Bakharev, “Tectonic setting of the plutonic belts of Yakutia, northeast Russia, based on 40Ar/39Ar geochronology and trace element geochemistry,” Geology 29, 167–170 (2001).

    Article  Google Scholar 

  35. F. Lisker, B. Ventura, and U. A. Glasmacher, “Apatite thermochronology in modern geology,” in Thermochronological Methods: From Palaeotemperature Constraints to Landscape Evolution Models, Vol. 324 of Geol. Soc., London, Spec. Publ., Ed. by F. Lisker, B. Ventura, and U. A. Glasmacher (London, 2009), pp. 1–23.

  36. F. W. McDowell, W. C. McIntosh, and K. A. Farley, “A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard,” Chem. Geol. 214, 249–263 (2005).

    Article  Google Scholar 

  37. C. W. Naeser, R. A. Zimmermann, and G. T. Cebula, “Fission-track dating of apatite and zircon: An interlaboratory comparison,” Nucl. Tracks 5, 65–72 (1981).

    Article  Google Scholar 

  38. L. M. Parfenov, A. V. Prokopiev, and V. V. Gaiduk, “Cretaceous frontal thrusts of the Verkhoyansk fold belt, eastern Siberia,” Tectonics 14, 342–358 (1995).

    Article  Google Scholar 

  39. T. Tagami, R. F. Galbraith, R. Yamada, and G. M. Laslett, “Revised annealing kinetics of fission tracks in zircon and geological implications,” in Advances in Fission-Track Geochronology, Ed. by P. Van den Haute and F. De Corte (Kluwer, Dordrecht, 1998), pp. 99–112.

    Google Scholar 

  40. J. Toro, A. V. Prokopiev, J. Colgan, T. Dumitru, and E. L. Miller, “Apatite fission-track thermochronology of the southern Verkhoyansk fold-and-thrust belt, Russia,” Am. Geophys. Union, Fall Meeting, 2004, Abstr. GP44A-01. http://adsabs.harvard.edu/abs/ 2004AGUFMGP44A..01T.

Download references

ACKNOWLEDGMENTS

The work was supported by a Grant of the President of the Russian Federation (MK-739.2017.5), Scientific Research Program, St. Petersburg State University (3.57.1179.2016; 3.42.979.2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Malyshev.

Additional information

Translated by E. Maslennikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyshev, S.V., Khudoley, A.K., Glasmacher, U.A. et al. Constraining Age of Deformation Stages in the South-Western Part of Verkhoyansk Fold-and-Thrust Belt by Apatite and Zircon Fission-Track Analysis. Geotecton. 52, 634–646 (2018). https://doi.org/10.1134/S0016852118060055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852118060055

Keywords:

Navigation