Skip to main content
Log in

Ophiolitic Complex of the Matachingai River on Eastern Chukotka: Fragment of Lithosphere in Mesozoic Back-Arc Basin

  • Published:
Geotectonics Aims and scope

Abstract

The Matachingai River basin is known among the few ophiolitic complexes on eastern Chukotka as the southern boundary of the Chukotka Fold System (in terms of tectonics, the Chukotka microcontinent or a fragment of the Arctic Alaska–Chukotka microplate). This complex comprises tectonic blocks of residual spinel harzburgite with dunite bodies and pyroxenite, olivine gabbro, and leucogabbro veins; blocks of hornblende gabbro, diorite, and plagiogranite; and Upper Jurassic–Lower Cretaceous basaltic–cherty and cherty–carbonate rocks. The geological relationships of rocks within tectonic blocks, the compositions of primary minerals, the bulk geochemistry of rocks, as well as the strontium, neodymium, and lead isotopic compositions, make it possible to consider individual tectonic blocks of the complex as fragments of a disintegrated oceanic-type lithosphere that formed in a back-arc spreading center. The melts, crystallization products of which are represented by hornblende gabbro of blocks, olivine gabbro of veins, and basalts, separated from geochemically and isotopically heterogeneous mantle. Blocks composed of rocks with various modal composition are likely relicts of an oceanic lithosphere of different segments of a back-arc basin. The studied complex may be a lithosphere of one of the Middle–Late Jurassic back-arc basins. Fragments of these basins are retained in ophiolitic complexes on Great Lyakhovsky Island of the New Siberian Islands Archipelago, western Chukotka, and the Brooks Range in Alaska.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Akinin, Candidate’s Dissertation in Geology and Mineralogy (Magadan, 1990).

    Google Scholar 

  2. A. V. Akinin and E. L. Miller, “Evolution of calc-alkaline magmas of the Okhotsk–Chukotka volcanic belt,” Petrology 19, 237–277 (2011).

    Article  Google Scholar 

  3. B. A. Bazylev, Doctoral Dissertation in Geology and Mineralogy (Moscow, 2003).

    Google Scholar 

  4. B. A. Bazylev and G. V. Ledneva, “Geobarometry of mineral associations of plagioclase lherzolites–olivine gabbro-norites: Approaches, problems, and preliminary results,” in Proceedings of the VIII Meeting of the Interridge Russian Division (All-Russia Scientific Research Institute of Geology and Mineral Resources of the World Ocean, St. Petersburg, 2013), pp. 9–11.

    Google Scholar 

  5. B. A. Bazylev, G. V. Ledneva, Ya. V. Bychkova, D. V. Kuzmin, and N. N. Kononkova, “Geochemical peculiarities of dunites and melts trapped by them,” in Proceedings of the V International Conference “Ultrabasic-Basic Rock Complexes: Geology, Structure, and Ore Potential” (Buryat State Univ., Ulan Ude, 2017), pp. 39–41.

    Google Scholar 

  6. B. A. Bazylev and S. A. Silantyev, “Geodynamic interpretation of the subsolidus recrystallization of mantle spinel peridotites. 1. Mid-ocean ridges,” Petrology 8, 201–213 (2000).

    Google Scholar 

  7. V. N. Voevodin, N. G. Zhitkov, and V. A. Solov’ev, “Mesozoic eugeosyncline complex in the Chukotka,” Geotektonika, No. 6, 101–109 (1978).

    Google Scholar 

  8. A. V. Ganelin, Ophiolite Complexes of Western Chukotka: Structure, Age, Composition, and Geodynamic Formation Settings (GEOS, Moscow, 2017) [in Russian].

    Google Scholar 

  9. A. V. Ganelin and S. A. Silantyev, “Composition and geodynamic conditions of formation of the intrusive rocks of the Gromadnensky–Vurguveem peridotitegabbro massif, Western Chukotka,” Petrology 16, 606–626 (2008).

    Article  Google Scholar 

  10. M. L. Gel’man, “Phanerozoic granite-metamorphic domes in Northeastern Siberia. Part 1. Geological history of Paleozoic and Mesozoic domes,” Tikhookean. Geol., No. 4, 102–115 (1995).

    Google Scholar 

  11. Geological Map of the USSR and Adjacent Areas, Scale 1: 2500000, Ed. by D. V. Nalivkin (Karpinsky Russian Geological Research Inst., Leningrad, 1983) [in Russian].

    Google Scholar 

  12. S. S. Drachev and L. A. Savostin, “Ophiolites of Great Lyakhovsky Island, New Siberian Islands,” Geotektonika, No. 3, 98–107 (1993).

    Google Scholar 

  13. I. L. Zhulanova, Crust of Northeastern Asia in the Precambrian and Phanerozoic (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  14. V. K. Karandashev, A. N. Turanov, T. A. Orlova, A. E. Lezhnev, S. V. Nosenko, N. I. Zolotareva, and I. R. Moskvina, “Application of ICP-MS method for element analysis of environemtal objects,” Zavod. Lab., Diagn. Mater. 73 (1), 12–22 (2007).

    Google Scholar 

  15. Yu. A. Kosygin, V. N. Voevodin, N. G. Zhitkov, and V. A. Solov’ev, “East Chukotka volcanic zone and tectonic nature of volcanogenic belts,” Dokl. Akad. Nauk SSSR 216, 885–888 (1974).

    Google Scholar 

  16. I. N. Kotlyar, I. L. Zhulanova, T. B. Rusakova, and A.M. Gagieva, Isotope Systems of Igneous and Metamorphic complexes of Northeast Russia (North-East Interdisciplinary Scientific Research Inst., Far Eastern Scientific Center, Russian Academy of Sciences, Magadan, 2001) [in Russian].

    Google Scholar 

  17. A. B. Kuz’michev, E. V. Sklyarov, and I. G. Barash, “Pillow basalts and glaucophane schists on the Great Lyakhovsky Island (New Siberian Islands)—fragments of the lithosphere of the South Anyui Paleocean,” Geol. Geofiz. 46, 1367–1381 (2005).

    Google Scholar 

  18. P. P. Lychagin, S. G. Byalobzheskii, Yu. A. Kolyasnikov, E. A. Corago, and V. B. Likman, Geology and Petrography of the Gromadnenskysko-Vurguveem Gabbro-Norite Massif, South Anyui zone (North-East Interdisciplinary Scientific Research Inst., Far Eastern Scientific Center, Russian Academy of Sciences, Magadan, 1991) [in Russian].

    Google Scholar 

  19. P. P. Lychagin, “Aluchina massif and problems of ophiolitic ultrabasites and gabbros in Mesozoic of Northeastern USSR,” Tikhookean. Geol., No. 5, 33–41 (1985).

    Google Scholar 

  20. G. E. Nekrasov, “Transform strike-slip tectonic model (alternative to collision one) of the Verkhoyansk–Chukotka Mesozoides,” in Proceeedings of the XLIX Meeting on Tectonics Dedicated to the 100th Anniversary of Academician Yu. M. Pushcharovskii “Tectonics of Contemporary and Ancient Oceans and Their Margins,” Ed. by K. E. Degtyarev (GEOS, Moscow, 2017), Vol. 2, pp. 33–36.

    Google Scholar 

  21. M. I. Tuchkova, G. E. Bondarenko, M. I. Buyakaite, D. I. Golovin, I. O. Galuskina, and E. V. Pokrovskaya, “Deformation of the Chukchi microcontinent: Structural, lithologic, and geochronological evidence,” Geotectonics 41, 403–421 (2007).

    Article  Google Scholar 

  22. G. A. Tynankergav and Yu. M. Bychkov, “Siliceousvolcanogenic-terrigenous deposits of the western Chukshi Peninsula,” Dokl. Akad. Nauk SSSR 296, 698–700 (1987).

    Google Scholar 

  23. A. I. Khanchuk, V. V. Golozubov, S. G. Byalobzheskii, L. I. Popenko, N. A. Goryachev, and S. M. Rodionov, “Cratonic and orogenic belts of eastern Russia,” in Geodynamics, Magmatism, and Metallogeny of Eastern Russia, Ed. by A. I. Khanchuk (Dal’nauka, Vladivostok, 2006), Vol. 1, pp. 93–229.

    Google Scholar 

  24. V. I. Shul’diner and V. F. Nedomolkin, “Crystalline basement of the Eskimo massif,” Sov. Geol., No. 10, 33–47 (1976).

    Google Scholar 

  25. A. A. Shchipanskii, “Boninites through time and space: petrogenesis and geodynamic settings,” Geodin. Tektonofiz. 7, 143–172 (2016).

    Article  Google Scholar 

  26. V. V. Akinin and A. T. Calvert, “Cretaceous mid-crustal metamorphism and exhumation of the Koolen Gneiss Dome, Chukotka, northeastern Russia,” in Tectonic Evolution of the Bering Shelf–Chukchi Sea–Arctic Margin and Adjacent Landmasses, Geol. Soc. Am., Spec. Pap. vol. 360, Ed. by E. L. Miller, A. Grantz, and S. L. Klemperer (Geol. Soc. Am., Boulder, 2002), pp. 147–165.

    Google Scholar 

  27. “Penrose field conference on ophiolites,” Geotimes 17, 24–25 (1972).

  28. C. Ballhaus, R. F. Berry, and D. H. Green, “High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle,” Contrib. Mineral. Petrol. 107, 27–40 (1991).

    Article  Google Scholar 

  29. B. A. Bazylev, A. Popević, S. Karamata, N. N. Kononkova, S. G. Simakin, J. Olujić, L. Vujnović, and E. Memović, “Mantle peridotites from the Dinaridic ophiolite belt and the Vardar zone western belt, central Balkan: a petrological comparison,” Lithos 108, 37–71 (2009).

    Article  Google Scholar 

  30. Bering Strait Geologic Field Party, “Koolen metamorphic complex, NE Russia: Implications for tectonic evolution of the Bering Strait region,” Tectonics 16, 713–729 (1997).

    Article  Google Scholar 

  31. H. B. Dick and T. Bullen, “Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas,” Contrib. Mineral. Petrol. 86, 54–76 (1984).

    Article  Google Scholar 

  32. Y. Dilek and H. Furnes, “Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere,” Geol. Soc. Am. Bull. 123, 387–411 (2011).

    Article  Google Scholar 

  33. S. Fretzdorff, R. A. Livermore, C. W. Devey, P. T. Leat, and P. Stoffers, “Petrogenesis of the back-arc East Scotia Ridge, South Atlantic Ocean,” J. Petrol. 43, 1435–1467 (2002).

    Article  Google Scholar 

  34. A. Grantz, D. Sholl, J. Toro, and S. L. Klemperer, “Geologic structure of Bering and Chukchi shelves adjacent to Bering–Chukchi Deep Seismic Transect and tectonostratigraphic terranes of adjacent landmasses,” in Tectonic Evolution of the Bering Shelf–Chukchi Sea–Arctic Margin and Adjacent Landmasses, Geol. Soc. Am., Spec. Pap. vol. 360, Ed. by E. L. Miller, A. Grantz, and S. L. Klemperer (Geol. Soc. Am., Boulder, Colo., 2002), Plate 1.

    Google Scholar 

  35. R. A. Harris, “Geochemistry and tectonomagmatic origin of the Misheguk massif, Brooks Range ophiolitic belt, Alaska,” Lithos 35, 1–25 (1995).

    Article  Google Scholar 

  36. R. A. Himmelberg and G. R. Loney, “The Kanuti ophiolite, Alaska,” J. Geophys. Res.: Solid Earth 94, 15869–15900 (1993).

    Google Scholar 

  37. K. Hoernle, F. Hauff, R. Werner, P. van den Bogaard, A. D. Gibbons, S. Conrad, and R. D. Muller, “Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere,” Nat. Geosci. 4, 883–887 (2011).

    Article  Google Scholar 

  38. T. Ishii, P. T. Robinson, H. Maekawa, and R. Fiske, “Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara–Mariana Forearc, Leg. 125,” in Proceedings of the Ocean Drilling Program, Scientific Results, Ed. by P. Fryer, J. A. Pearce, and L. B. Stokking (College Station, Tex., 1992), Vol. 125, pp. 445–485.

    Google Scholar 

  39. E. A. Jarosevich, J. A. Nelen, and J. A. Norberg, “Reference sample for electron microprobe,” Geostand. Newslett. 4, 43–47 (1980).

    Article  Google Scholar 

  40. K. P. Jochum, D. B. Dingwell, A. Rocholl, B. Stoll, A. W. Hofmann, S. Becker, A. Besmehn, D. Bessette, H. J. Dietze, P. Dulski, J. Erzinger, E. Hellebrand, P. Hoppe, I. Horn, K. Janssens, et al., “The preparation and preliminary characterization of eight geological MPI-DING reference glasses for in-situ microanalysis,” Geostand. Newslett. 24, 87–133 (2000).

    Article  Google Scholar 

  41. K. P. Jochum, B. Stoll, K. Herwig, and M. Willbold, “Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm Nd: YAG laser and matrix-matched calibration,” J. Anal. At. Spectrom. 22, 112–121 (2007).

    Article  Google Scholar 

  42. K. P. Jochum, U. Weis, B. Stoll, D. Kuzmin, Q. Yang, I. Raczek, D. E. Jacob, A. Stracke, K. Birbaum, D. A. Frick, D. Günther, and J. Enzweiler, “Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines,” Geostand. Geoanal. Res. 35, 397–429 (2011).

    Article  Google Scholar 

  43. V. S. Kamenetsky, A. J. Crawford, and S. Meffre, “Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks,” J. Petrol. 42, 655–671 (2001).

    Article  Google Scholar 

  44. J. I. Kimura, J. B. Gill, S. Skora, P. E. van Keken, and H. Kawabata, “Origin of geochemical mantle components: Role of subduction filter,” Geochem. Geophys. Geosyst. 17, 3289–3325 (2016).

    Article  Google Scholar 

  45. T. Kuritani, E. Ohtani, And J. I. Kimura, “Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation,” Nat. Geosci. 4, 713–716 (2011).

    Article  Google Scholar 

  46. G. V. Ledneva, V. L. Pease, and S. D. Sokolov, “Permo-Triassic hypabyssal basic intrusions and associated tholeiitic basalts of the Kolyuchinskaya Bay, Chukotka (NE Russia): Links to the Siberian LIP,” J. Asian Earth Sci. 40, 737–745 (2011).

    Article  Google Scholar 

  47. E. L. Miller, J. Toro, G. Gehrels, J. M. Amato, A. Prokopiev, M. I. Tuchkova, V. V. Akinin, T. A. Dumitru, T. E. Moore, and M. P. Cecile, “New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology,” Tectonic. 25 (2006). https://doi.org/.10.1029/2005TC001830

  48. T. E. Moore, J. N. Aleinikoff, and K. R. Wirth, “Middle Jurassic U-Pb ages for Brooks Range ophiolites,” EOS, Am. Geophys. Union Fall Meeting, Abstr. 79, 807–808 (1998).

    Google Scholar 

  49. D. T. Murphy, K. D. Collerson, and B. S. Kamber, “Lamproites from Gaussberg, Antarctica: Possible transition zone melts of Archaean subducted sediments,” J. Petrol. 43, 981–1001 (2002).

    Article  Google Scholar 

  50. B. A. Natal’in, J. M. Amato, J. Toro, and J. E. Wright, “Paleozoic rocks of the Chegitun River Valley, northern Chukotka Peninsula: insights into the tectonic evolution of the eastern Arctic,” Tectonics 18, 977–1003 (1999).

    Article  Google Scholar 

  51. W. J. Nokleberg, T. D. West, K. M. Dawson, V. I. Shpikerman, T. K. Bundtzen, L. M. Parfenov, J. W. H. Monger, V. V. Ratkin, B. V. Baranov, S. G. Byalobzhesky, M. F. Diggles, R. A. Eremin, K. Fujita, S. P. Gordey, M. E. Gorodinskiy, et al., Summary terrane, Mineral Deposit, and Metallogenic Belt Maps of the Russian Far East, Alaska, and the Canadian Cordillera: U.S. Geol. Surv. Open-File Report 98-136 (U.S. Geol. Surv., Washington, 1998).

    Google Scholar 

  52. D. B. Othman, M. Polve, and C. J. Allegre, “Nd–Sr isotopic composition of granulites and constraints on the evolution of the lower continental crust,” Nature 307, 510–515 (1984).

    Article  Google Scholar 

  53. J. S. Pallister, J. R. Budahn, and B. L. Murchey, “Pillow basalts of the Angayucham terrane: Oceanic plateau and island arc crust accreted to Brooks Range,” J. Geophys. Res.: Solid Earth Planet. 94, 15901–15923 (1989).

    Article  Google Scholar 

  54. J. A. Pearce, R. J. Stern, S. H. Bloomer, and P. Fryer, “Geochemical mapping of the Mariana arc-basin system: Implication for the nature and distribution of subduction components,” Geochem. Geophys. Geosyst. 6, (2005). https://doi.org/.10.1029/2004GC000895

  55. J. A. Pearce and R. J. Stern, “Origin of back-arc basin magmas: Trace element and isotope perspectives,” in Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, Ed. by D. M. Christie, C. R. Fisher, S. M. Lee, and S. Givens (Am. Geophys. Union, Washington, 2006), pp. 63–87.

    Chapter  Google Scholar 

  56. T. Plank and C. H. Langmuir, “Effects of the melting regime on the composition of oceanic crust,” J. Geophys. Res.: Solid Earth 97, 19749–19770 (1992).

    Article  Google Scholar 

  57. M. K. Reichow, M. S. Pringle, A. I. Al’mukhamedov, M. B. Allen, V. L. Andreichev, M. M. Buslov, C. E. Davies, G. S. Fedoseev, J. G. Fitton, S. Inger, A. Ya. Medvedev, C. Mitchell, V. N. Puchkov, I. Yu. Safonova, R. A. Scott, and A. D. Sauders, “The timing and extent of the eruption of the Siberian Traps large igneous province: Implication for the end-Permian environmental crisis,” Earth Planet. Sci. Lett. 277, 9–20 (2009).

    Article  Google Scholar 

  58. P. Richard, N. Shimizu, and C. J. Allegre, “143Nd/146Nd, a natural trasser: An application to oceanic basalts,” Earth Planet. Sci. Lett. 31, 269–278 (1976).

    Article  Google Scholar 

  59. A. V. Sobolev, A. W. Hofmann, D. V. Kuzmin, G. M. Yaxley, N. T. Arndt, S. L. Chung, L. V. Danyushevsky, T. Elliott, F. A. Frey, M. O. Garcia, A. A. Gurenko, V. S. Kamenetsky, A. C. Kerr, N. A. Krivolutskaya, V. V. Matvienkov, et al., “The amount of recycled crust in sources of mantle-derived melts,” Science 316, 412–417 (2007).

    Article  Google Scholar 

  60. S. D. Sokolov, G. Ye. Bondarenko, A. K. Khudoley, O. L. Morozov, M. V. Luchitskaya, M. I. Tuchkova, and P. W. Layer, “Tectonic reconstruction of Uda-Murgal arc and the Late Jurassic and Early Cretaceous convergent margin of Northeast Asia–Northwest Pacific,” in Geology and Tectonic Origins of Northeast Russia: A Tribute to Leonid Parfenov, Stephan Mueller Spec. Publ. Ser. Vol. 4, Ed. by D. B. Stone, K. Fujita, P. W. Layer, E. L. Miller, A. V. Prokopiev, and J. Toro (2009), pp. 273–288.

    Google Scholar 

  61. S. D. Sokolov, G. Ye. Bondarenko, O. L. Morozov, V. A. Shekhovtsov, S. P. Glotov, A. V. Ganelin, and I. R. Kravchenko-Berezhnoy, “South Anuyi suture, northeast Arctic Russia: Facts and problems,” in Tectonic Evolution of the Bering Shelf–Chukchi Sea–Arctic Margin and Adjacent Landmasses, Geol. Soc. Am., Spec. Pap. vol. 360, Ed. by E. L. Miller, A. Grantz, and S. L. Klemperer (Geol. Soc. Am., Boulder, 2002), pp. 209–224.

    Google Scholar 

  62. S. D. Sokolov, G. V. Ledneva, M. I. Tuchkova, M. V. Luchitskaya, A. V. Ganelin, and V. E. Verzhbitsky, “Chukchi Arctic continental margins: Tectonic evolution, link to the opening of the Amerasia Basin,” Proceedings of the International Conference on Arctic Margins, ICAM VI, Ed. by D. B. Stone, G. E. Grikurov, J. G. Clough, G. N. Oakey, and D. K. Thurston (Karpinsky Russian Geological Research Inst., St. Petersburg, 2014), pp. 97–113.

    Google Scholar 

  63. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes,” in Magmatism in the Ocean Basins, Geol. Soc. London, Spec. Publ. vol. 42. Ed. by A. D. Saunders and M. J. Norry (London, 1989), pp. 313–345.

    Google Scholar 

  64. Y. Tatsumi, T. Suzuki, H. Ozawa, K. Hirose, T. Hanyu, and Y. Ohishi, “Accumulation of “anti-continent” at the base of the mantle and its recycling in mantle plumes,” Geochim. Cosmochim. Acta 143, 23–33 (2014).

    Article  Google Scholar 

  65. P. R. A. Wells, “Pyroxene thermometry in simple and complex systems,” Contrib. Mineral. Petrol. 62, 129–139 (1977).

    Article  Google Scholar 

  66. M. Willbold and A. Stracke, “Formation of enriched mantle components by recycling of upper and lower continental crust,” Chem. Geol. 276, 188–197 (2010).

    Article  Google Scholar 

  67. K. R. Wirth, J. M. Bird, A. E. Blythe, and D. J. Harding, “Age and evolution of western Brooks Range ophiolites, Alaska: Results from 40Ar/39Ar thermochronology,” Tectonics 12, 410–423 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Ledneva.

Additional information

Original Russian Text © G.V. Ledneva, B.A. Bazylev, A.V. Moiseev, S.D. Sokolov, A. Ishiwatari, D.V. Kuzmin, B.V. Belyatsky, 2018, published in Geotektonika, 2018, No. 4, pp. 54–76.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledneva, G.V., Bazylev, B.A., Moiseev, A.V. et al. Ophiolitic Complex of the Matachingai River on Eastern Chukotka: Fragment of Lithosphere in Mesozoic Back-Arc Basin. Geotecton. 52, 447–467 (2018). https://doi.org/10.1134/S0016852118040040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852118040040

Keywords

Navigation